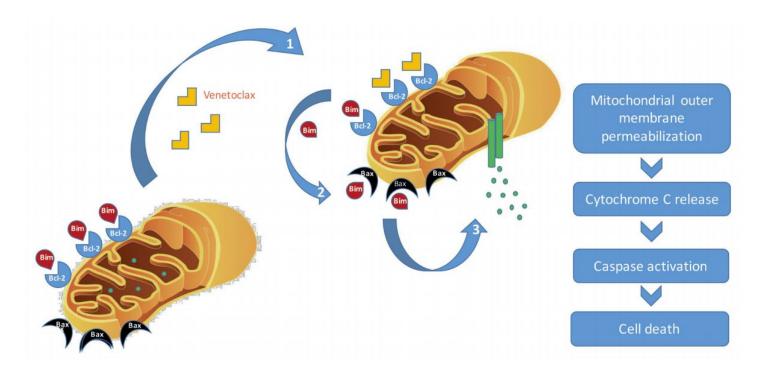
Practical Strategies for Managing Leukemias: Managing the Patient Who is Not Eligible for Intensive Chemotherapy and Development of Small Molecule Targeted Therapy

Michael J. Thirman, M.D. Indy Rare Diseases Symposium

THE UNIVERSITY OF CHICAGO

Conflict of Interest Statement


Consulting or Advisory Role: AstraZeneca, Genentech, AbbVie, Adaptive Biotechnologies, Celgene, Pharmacyclics, CVS Health
Research Funding: AbbVie (Institutional), Syndax (Institutional), Merck (Institutional), TG Therapeutics (Institutional), Nurix (Institutional)
Expert Testimony: Apotex

Michael J. Thirman, M.D.

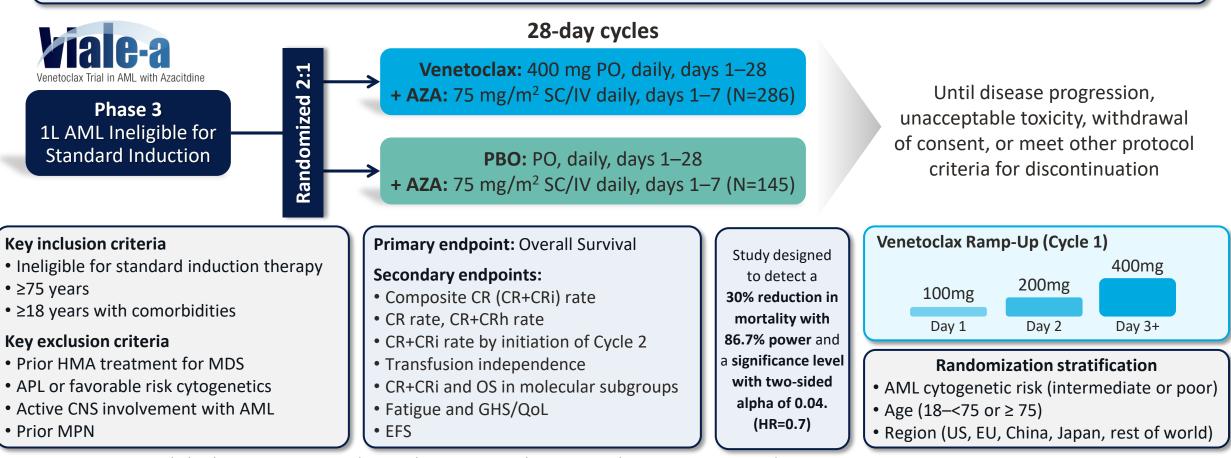
THE UNIVERSITY OF CHICAGO

BCL-2 Inhibitor: Venetoclax

- BCL-2 stabilizes mitochondria, preventing activation of proapoptotic proteins.
- Inhibition of BCL-2 enables apoptosis.
- BCL-2 expression is elevated in high-risk MDS and AML.

BCL-2 and AML

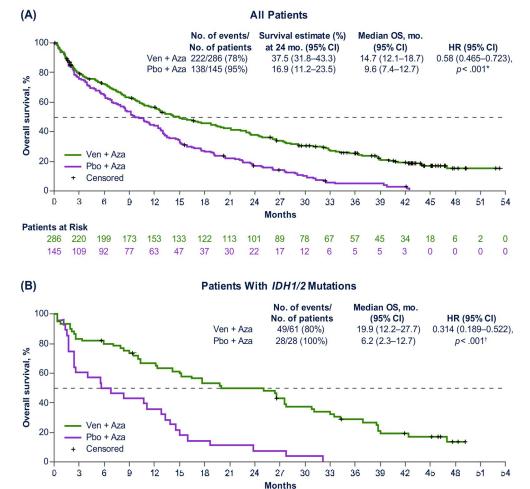
A healthy cell with **normal expression** of BCL-2 pro-survival proteins has **balanced cell survival and cell death** An AML cell with **overexpressed** BCL-2 pro-survival proteins sequesters and prevents the activation of pro-death proteins, **enhancing leukemic cell survival**



- ~80% of AML patients overexpress BCL-2.
- Relatively limited single-agent activity (CR/Cri 19%, predominantly IDH-mutant).

VIALE-A Study Design

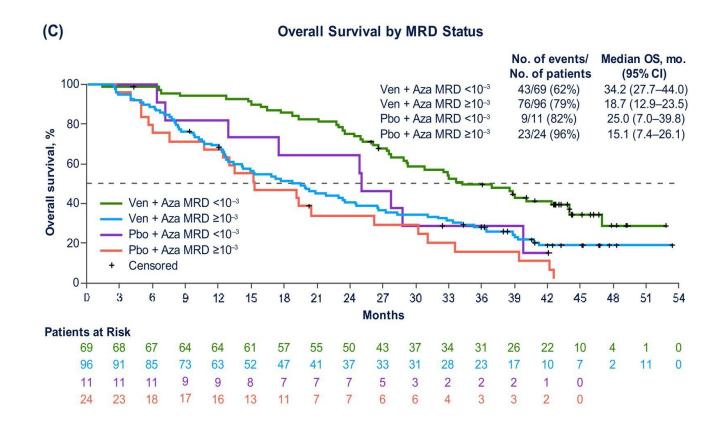
Viale-A (NCT02993523) – Phase 3 randomized, double-blind study of VEN + AZA vs PBO + AZA in treatment-naïve patients with AML who are ineligible for standard induction therapy

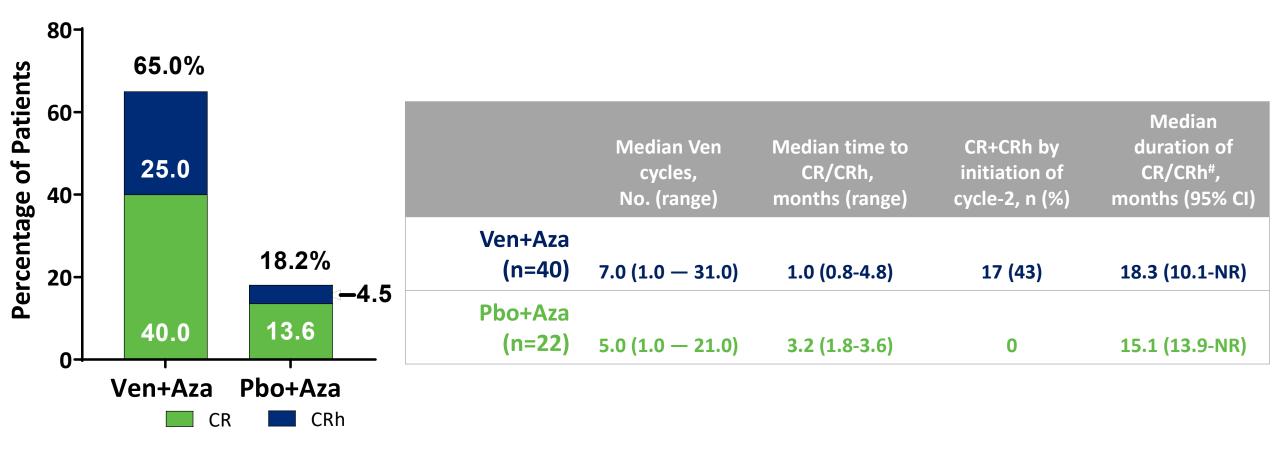


1L=First-Line. AML=Acute Myeloid Leukemia. APL=Acute Promyelocytic Leukemia. AZA=Azacitidine. CNS=Central Nervous System. CR=Complete Response. CRi=CR with Incomplete Blood Count Recovery. CRh=CR with Partial Hematologic Recovery. ECOG PS=Eastern Cooperative Oncology Group Performance Status. EFS=Event Free Survival. GHS=Global Health Status. HMA=Hypomethylating Agent. HR=Hazard Ratio. IV=Intravenous. MDS=Myelodysplastic Syndromes. MPN=Myeloproliferative Neoplasms. OS=Overall Survival. PBO=Placebo. PO=Oral. QoL=Quality of Life. SC=Subcutaneous. VEN=Venetoclax.

tus. Data on File, Abbvie Inc. ABVRRTI70104. ClinicalTrials.gov. NCT02993523 (accessed Apr 2020). DiNardo CD, et al. Oral LB2601. 25th EHA Congress. June 11-21, 2020.

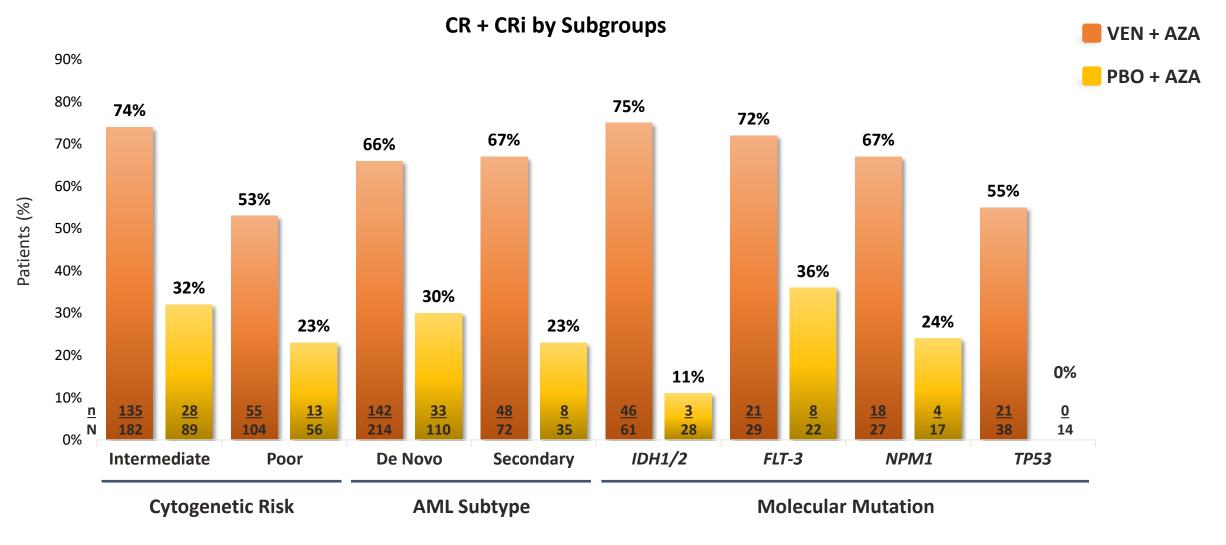
abbvie


Long-term follow-up of VIALE-A: Venetoclax and azacitidine in chemotherapy-ineligible untreated acute myeloid leukemia



Pratz et al. American J Hematol, Volume: 99, Issue: 4, Pages: 615-624, February 2024, DOI: (10.1002/ajh.27246)

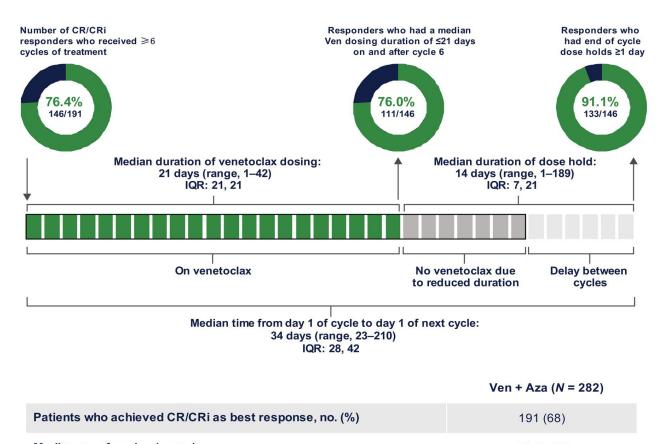
Long-term follow-up of VIALE-A: Venetoclax and azacitidine in chemotherapy-ineligible untreated acute myeloid leukemia



Impact of FLT3 Mutation on Outcomes after Venetoclax and Azacitidine for Patients with Treatment-Naïve Acute Myeloid Leukemia

Aza: Azacitidine; CR: Complete remission; CRh: CR with partial hematologic recovery; NR: Not reached; PBO: Placebo; Ven: Venetoclax;; [#] Median duration of response was evaluated in responders: Ven+Aza (n=26); Pbo+Aza(n=4); CR was defined as absolute neutrophil count >10³/µL, platelets >10⁵/µL, red cell transfusion independence (TI); and bone marrow with <5% blasts;; CRh was defined as all the criteria for CR, except for neutropenia >0.5 X10³/µL, and platelets >0.5 x 10⁵/µL; Median duration of follow-up of FLT3 mutated patients: VIALE-A (Ven+Aza: 19.9 months [range: 0-30.1]); Pbo+Aza: 20.5 months [range: 0.2-28.8]); Phase 1b (29.1 months [range: 0.4-38.6])

VIALE-A: Response Rates (CR+CRi) by Subgroups



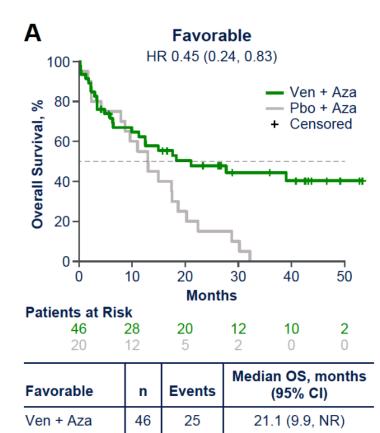
- Data cutoff date: January 4, 2020.
- DiNardo CD, et al. Oral LB2601. 25th EHA Congress. June 11-21, 2020.

Long-term follow-up of VIALE-A: Venetoclax and azacitidine in chemotherapy-ineligible untreated acute myeloid leukemia

	Ven + Aza <i>n/N</i> (%)	Pbo + Aza n/N (%)		HR (95% CI) Ven + Aza vs. Pbo + Az
All Patients	222/286 (77.6)	138/145 (95.2)	⊢ •	0.57 (0.45–0.70)
Sex			i	
Female	88/114 (77.2)	55/58 (94.8)	⊢ •−+ !	0.58 (0.41-0.82)
Male	134/172 (77.9)	83/87 (95.4)	i i⊷e-i	0.56 (0.42-0.74)
Age (Years)			1	
18 to <65	8/10 (80.0)	5/5 (100.0)	► • •	—— 0.61 (0.19–1.95)
65 to <75	79/102 (77.5)	49/53 (92.5)	⊢_	0.69 (0.48-0.99)
<75	87/112 (77.7)	54/58 (93.1)		0.68 (0.48-0.96)
≥75	135/174 (77.6)	84/87 (96.6)		0.50 (0.37-0.66)
Baseline ECOG			1	
Grade <2	127/157 (80.9)	78/81 (96.3)	i	0.52 (0.39-0.70)
Grade ≥2	95/129 (73.6)	60/64 (93.8)	· · · · · · ·	0.61 (0.44-0.85)
Type of AML				
De Novo	162/214 (75.7)	104/110 (94.5)	H++ 1	0.56 (0.44-0.73)
Secondary	60/72 (83.3)	34/35 (97.1)	· → → ↓	0.58 (0.37–0.89)
Cytogenetic risk			1	,
Intermediate	130/182 (71.4)	84/89 (94.4)	⊢ •→	0.49 (0.37-0.65)
Poor	92/104 (88.5)	54/56 (96.4)	⊢H	0.73 (0.52-1.03)
Molecular Marker			1	
FLT3	23/29 (79.3)	20/22 (90.9)	F − • • · · ·	0.65 (0.35–1.19)
IDH1	21/23 (91.3)	11/11 (100.0)	⊢	0.28 (0.12-0.66)
IDH2	30/40 (75.0)	18/18 (100.0)	·•	0.30 (0.16-0.57)
IDH1/2	49/61 (80.3)	28/28 (100.0)	· · · · ·	0.31 (0.19-0.52)
TP53	36/38 (94.7)	13/14 (92.9)	► •	
NPM1	17/27 (63.0)	17/17 (100.0)	↓ • • • • • •	0.52 (0.26-1.04)
AML-MRC			1	
Yes	81/92 (88.0)	46/49 (93.9)	 +	0.72 (0.50-1.04)
No	141/194 (72.7)	92/96 (95.8)	⊢ ●→	0.51 (0.39-0.67)
Bone Marrow Blast Count	. ,	. /		х Г Г
<30%	72/85 (84.7)	40/41 (97.6)	· · · · · · · · · · · · · · · · · · ·	0.60 (0.40-0.89)
30% to <50%	47/61 (77.0)	32/33 (97.0)	⊢	0.53 (0.34–0.84)
≥50%	103/140 (73.6)	66/71 (93.0)	— •1	0.56 (0.41–0.77)
		0.1	1	10
		0.1	Favor Ven + Aza	Favor Pbo + Aza

Long-term follow-up of VIALE-A: Venetoclax and azacitidine in chemotherapy-ineligible untreated acute myeloid leukemia

Median no. of cycles (range) 13 (1–46)

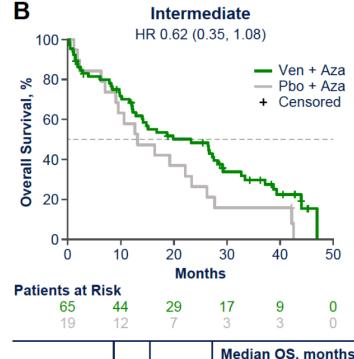

 Responders who had ≥6 cycles, no./No. (%)
 146/191 (76)

Pratz et al. American J Hematol, Volume: 99, Issue: 4, Pages: 615-624, February 2024, DOI: (10.1002/ajh.27246)

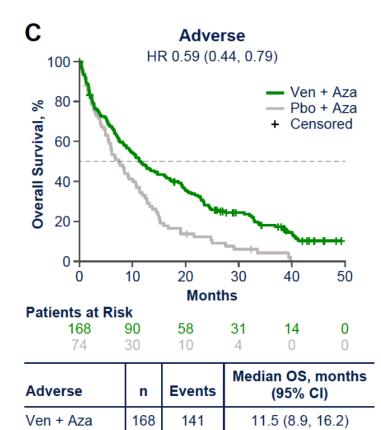
2022 ELN risk classification by genetics at initial diagnosis

Risk category	Genetic abnormality	
Favorable	t(8;21)(q22;q22.1)/RUNX1::RUNX1T1	
	inv(16)(p13.1q22) or t(16;16)(p13.1;q22)/CBFB::MYH11	
	Mutated NPM1 without FLT3-ITD	
	bZIP in-frame mutated CEBPA	
Intermediate	Mutated NPM1 with FLT3-ITD	
	Wild-type NPM1 with FLT3-ITD	
	t(9;11)(p21.3;q23.3)/ <i>MLLT3::KMT2A</i>	
	Cytogenetic and/or molecular abnormalities not classified as favorable or adverse	
Adverse	t(6;9)(p23;q34.1)/ <i>DEK</i> :: <i>NUP214</i>	
	t(v;11q23.3)/ <i>KMT2A</i> -rearranged	
	t(9;22)(q34.1;q11.2)/BCR::ABL1	
	t(8;16)(p11;p13)/KAT6A::CREBBP	
	inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2)/GATA2, MECOM(EVI1)	
	t(3q26.2;v)/ <i>MECOM(EVI1)</i> -rearranged	
	−5 or del(5q); −7; −17/abn(17p)	
	Complex karyotype, monosomal karyotype	
	Mutated ASXL1, BCOR, EZH2, RUNX1, SF3B1, SRSF2, STAG2, U2AF1, o ZRSR2	
	Mutated TP53	

OS in patients treated with venetoclax-azacitidine or placebo-azacitidine by risk group per ELN 2017



20


13.0 (4.2, 18.7)

20

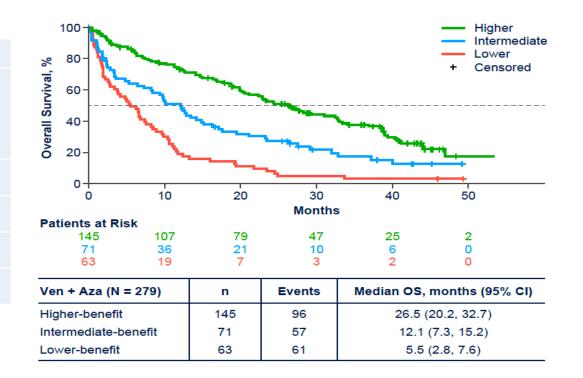
Pbo + Aza

Intermediate	n	Events	(95% CI)
Ven + Aza	65	48	23.3 (12.9, 28.3)
Pbo + Aza	19	18	13.1 (7.0, 23.4)

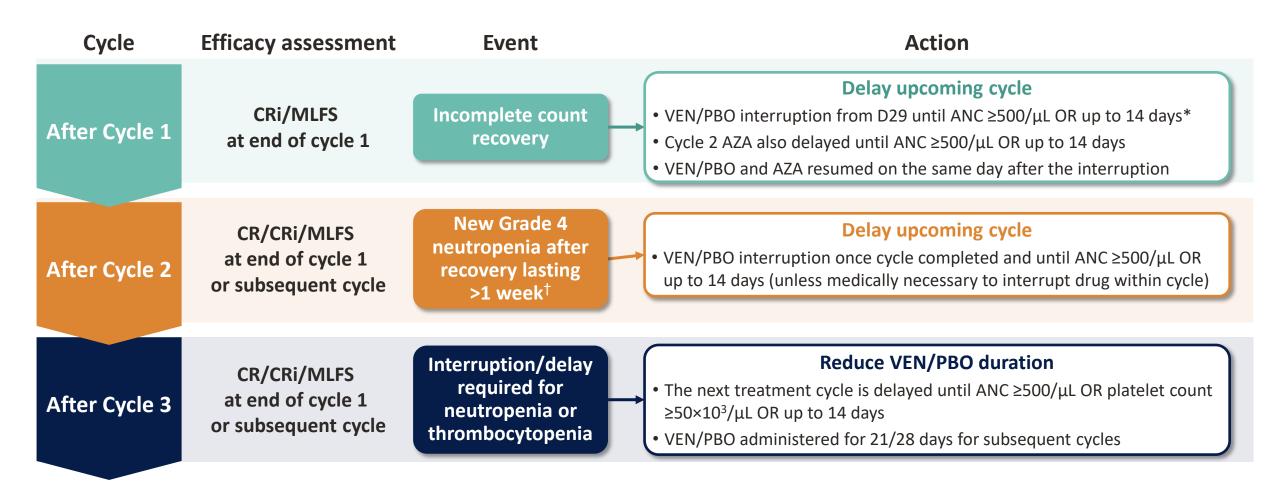
71

7.4 (5.4, 10.6)

74


Pbo + Aza

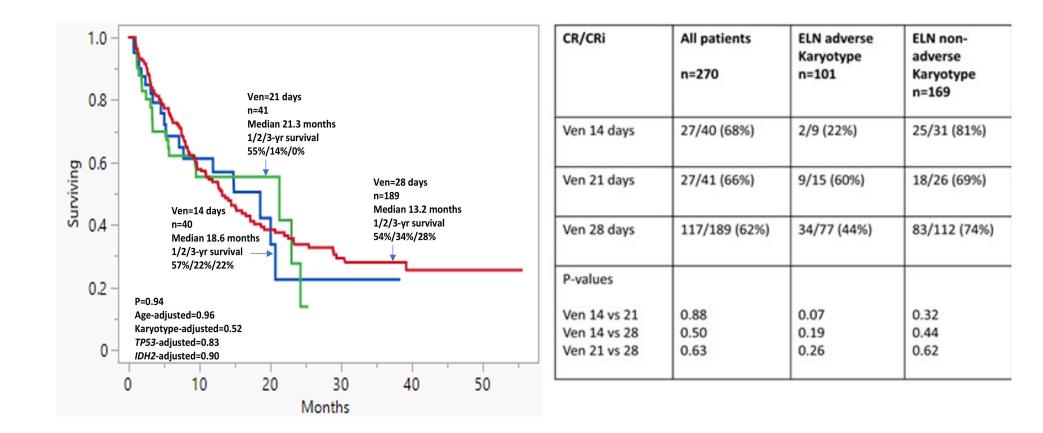
Genetic Risk Stratification and Outcomes Among Treatment-Naive Patients With Acute Myeloid Leukemia Treated With Venetoclax and Azacitidine


- While outcomes with venetoclax-azacitidine were improved across all ELN risk groups compared with placebo-azacitidine, ELN classification systems poorly discriminated venetoclax-azacitidine outcomes.
- The mutational status of *TP53*, *FLT3*-ITD, *NRAS*, and *KRAS* categorized patients into higher-, intermediate-, and lower-benefit groups (52%, 25%, and 23% of patients, respectively.
- The median OS for the higher benefit group was26.5 months [95% CI, 20.2 to 32.7], intermediate -12.1 months [95% CI, 7.3 to 15.2], and lower benefit 5.5 months [95% CI, 2.8 to 7.6], respectively

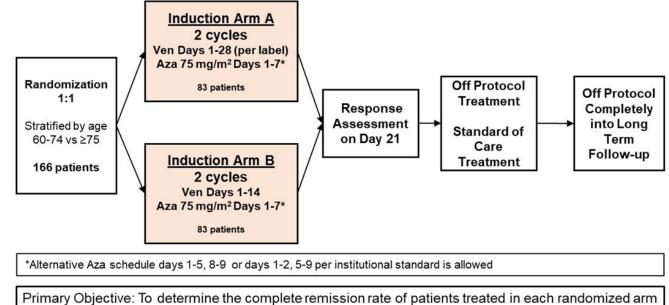
Genetic Risk Stratification and Outcomes Among Treatment-Naive Patients With Acute Myeloid Leukemia Treated With Venetoclax and Azacitidine

Group	Ven+Aza			
	Higher-	Intermediate-	Lower-	
	benefit	benefit	benefit	
	(n = 145)	(n = 71)	(n = 63)	
FLT3-ITD	0	39 (54.9)	4 (6.3)	
NRAS	0	28 (39.4)	5 (7.9)	
KRAS	0	11 (15.5)	2 (3.2)	
TP53	0	0	63 (100)	

Dose Modifications for Cytopenia



*Until day 42; if no recovery by day 42, discussion between PI and the AbbVie MD required. †Unless due to underlying disease e.g. relapse. ANC=Absolute Neutrophil Count. AZA=Azacitidine. CR=Complete Remission. CRi=CR with Incomplete Blood Count Recovery. D=Day. MLFS=Morphologic Leukemia Free State. PBO=Placebo. VEN=Venetoclax.


DiNardo CD, et al. Oral LB2601. 25th EHA Congress. June 11-21, 2020.

abbvie

Venetoclax duration (14 vs. 21 vs. 28 days) in combination with hypomethylating agent in newly diagnosed acute myeloid leukemia: Comparative analysis of response, toxicity, and survival

BEAT AML Protocol: A Randomized Phase 2 Trial of 28-Day (Arm A) Versus 14-Day (Arm B) Schedule of Venetoclax + Azacitidine in Newly Diagnosed Acute Myeloid Leukemia Patients ≥ 60 Years

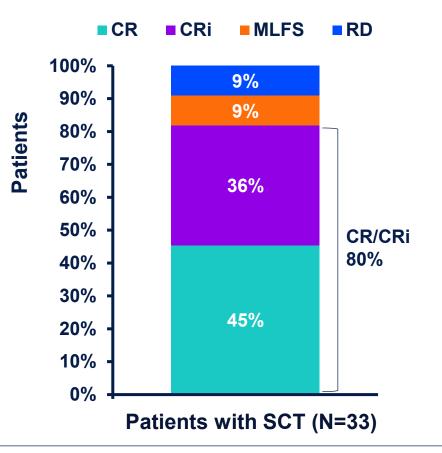
for up to 2 cycles.

Uma M. Borate, Ying Huang, Mary F. Johnson, Joshua F. Zeidner, Ronan T. Swords, Kristin L Koenig, Eytan M. Stein, Maria R. Baer, Wendy Stock, Yazan F. Madanat, Rebecca Olin, William Blum, Gary J. Schiller, Tara L Lin, Robert L. Redner, Emily K Curran, Nyla A. Heerema, Molly Martycz, Leonard Rosenberg, Sonja Gullen, Marcus, Timothy Chen, Mona Stefanos, Ross L Levine, Brian J. Druker, Ashley Owen Yocum, Amy Burd, Alice Mims, John C. Byrd

Outcomes of Stem Cell Transplant in Older Patients With Acute Myeloid Leukemia Treated With Venetoclax + HMA Therapies

Baseline Characteristics for Patients Who Received Ven+HMA Therapies + SCT

Characteristics	N=33
Treatment regimen, n (%)	
Ven+Aza	21 (64)
Ven+Dec	12 (36)
Median age (range), y	69 (63-76)
Male	19 (58)
Bone marrow blasts ≥50%,ª n (%)	12 (36)
AML type, n (%)	
De novo	23 (70)
Secondary	10 (30)
ECOG PS, n (%)	
0	12 (36)
1	10 (30)
2	11 (33)
NCCN cytogenetic risk category, n/N (%)	
Intermediate	20/33 (61)
Poor	12/33 (36)
ELN 2022 category, ^b n/N (%)	
Intermediate	7/30 (23)
Adverse	18/30 (60)
Baseline mutations, n/N (%)	
TP53	2/18 (11)
FLT3 (ITD or TKD)	5/20 (25)
NPM1	5/18 (28)
IDH1/2	7/20 (35)

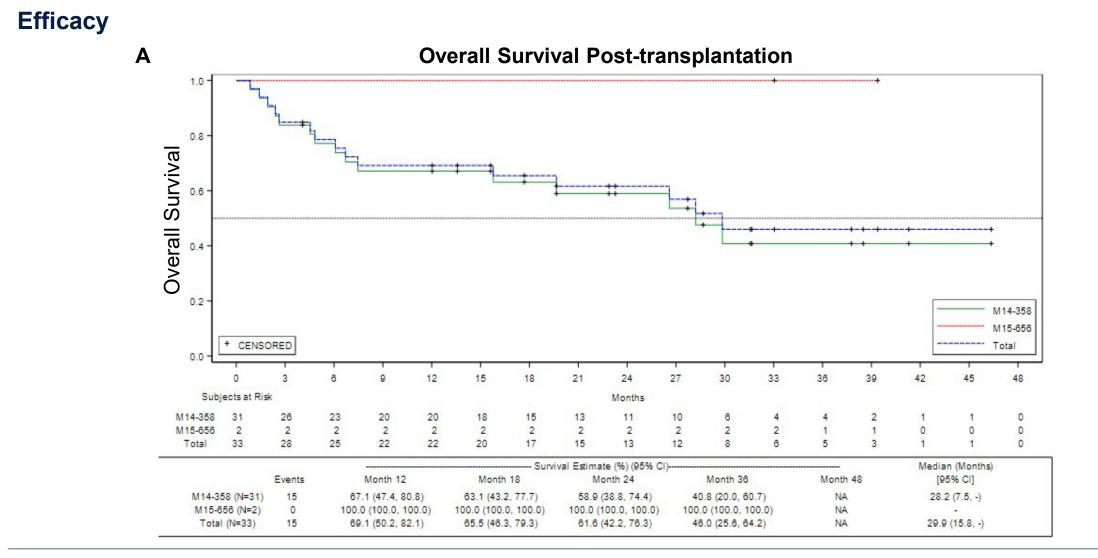

- 60% of patients had adverse risk disease based on 2022 ELN¹ categories
- 2 patients had TP53 mutations

1. Döhner H, et al. *Blood*. 2022;140(12):1345-1377.

^aAt the time of study enrollment; ^bELN classification based on 2022 ELN guidelines. ALM, acute myeloid leukemia; Aza, azacitidine; Dec, decitabine; ECOG PS, Eastern Cooperative Oncology Group performance status; ELN, European LeukemiaNet; HMA, hypomethylating agent; NCCN, National Comprehensive Cancer

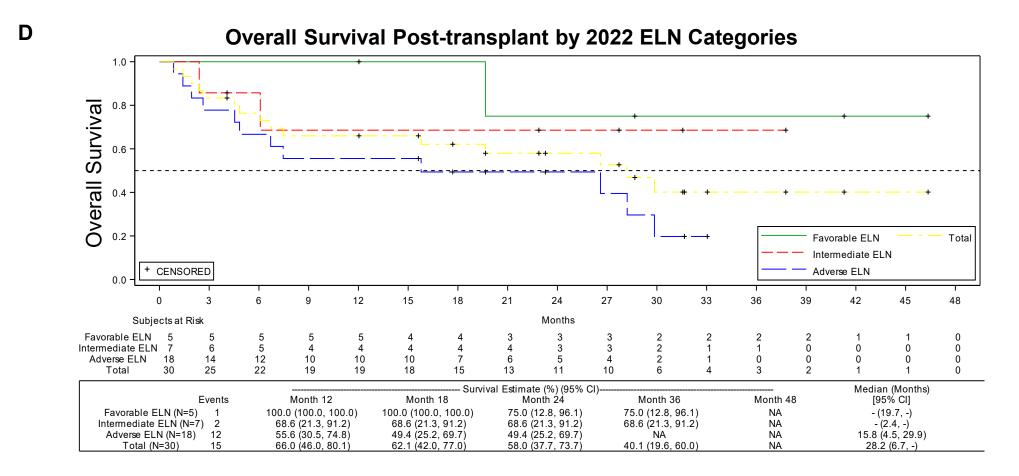
Outcomes of Stem Cell Transplant in Older Patients With Acute Myeloid Leukemia Treated With Venetoclax + HMA Therapies

Efficacy



Best Response Before SCT

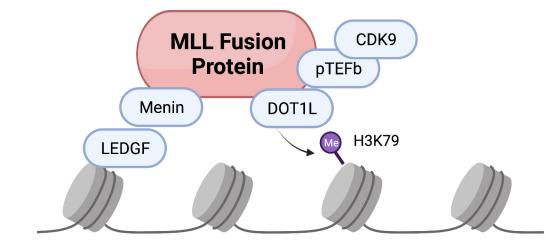
- Median time to CR/CRi: 1.9 months (range: 0.8–7.1)
- 2 patients who initially had a best response of CR, CRi, or MLFS relapsed before transplant; 3 patients had RD
- 28 patients were in CR, CRi, or MLFS at the time of transplant
- 9 patients had an MRD response (cutoff <10⁻³ leukemia cells/leukocyte)
 - − 16 patients had MRD positive disease (≥10⁻³)
 - 8 patients were not evaluable for MRD
- PLACEHOLDER: Number of patients who had a CR or CRi and MRD response


CR, complete response; CRi, CR with incomplete blood count recovery; CRh, CR with partial hematologic recovery; MLFS, morphologic leukemia-free state; MRD, minimal residual disease; RD, resistant disease; SCT, stem cell transplantation.

Outcomes of Stem Cell Transplant in Older Patients With Acute Myeloid Leukemia Treated With Venetoclax + HMA Therapies

Outcomes of Stem Cell Transplant in Older Patients With Acute Myeloid Leukemia Treated With Venetoclax + HMA Therapies

Efficacy (continued)



ELN, European LeukemiaNet; MRD, minimal residual disease; NA, not available.

Hypomethylating Agent /Venetoclax Conclusions

- Venetoclax in combination with azacitidine or decitabine can lead to rapid and deep responses in patients with newly diagnosed AML who were ineligible for intensive chemotherapy
- Best outcomes observed in patients with IDH1, IDH2, and NPM1 mutations with azacitidine/venetoclax compared to azacitidine alone.
- Patients with TP53 mutations have a higher remission rate with azacitidine/venetoclax compared to azacitidine alone, but long term outcomes are not superior.
- The mutational status of *TP53*, *FLT3*-ITD, *NRAS*, and *KRAS* categorized patients into higher-, intermediate-, and lower-benefit groups.
- Patients who were not eligible for intensive chemotherapy and received venetoclax + hypomethylating agents followed by stem cell transplantation had a median overall survival of 2.5 years; median overall survival was not reached for those who achieved minimal residual disease response before stem cell transplantation
- These results suggest that venetoclax + hypomethylating agents can be a bridge to stem cell transplantation, which can result in long-term survival in those who are ineligible for intensive chemotherapy

AUGMENT-101: Menin Inhibitor SNDX-5613 (Revumenib) Phase 1 Study

AUGMENT-101

Best Response	Efficacy Population (N=60)	
Response		
Overall response rate ¹ , n, (%)	32 (53%)	
CR/CRh	18 (30%)	
CR	12 (20%)	
CRh	6 (10%)	
CRp	5 (8%)	
MLFS	9 (15%)	
MRD ^{neg}		
CRc MRD ^{neg} Rate ²	18/60 (30%)	
within CR/CRh MRD ^{neg} n, (%)	14/18 (78%)	
within CR/CRh/CRp MRD ^{neg} n, (%)	18/23 (78%)	
KMT2Ar		
Overall response rate ¹ , n, (%)	27/46 (59%)	
CR/CRh	15/46 (33%)	
mNPM1		
Overall response rate ¹ , n, (%)	5/14 (36%)	
CR/CRh	3/14 (21%)	
¹ Overall Response Rate = CR+CRh+CRp+MLFS; ² CR	· · · · · · · · · · · · · · · · · · ·	

¹Overall Response Rate = CR+CRh+CRp+MLFS; ²CR+CRh+CRp; MRD status assessed locally by PCR or MCF

KMT2A-rearranged Acute Leukemia

- Most patients relapse after chemotherapy and HSCT¹
- In adults, remission rates after relapse (CR, 5%) and median OS (2.4 months) after ≥2 salvage therapies remain low¹
- Outcomes in infants/children after relapse remain poor

No approved targeted therapies for *KMT2Ar* disease

OS in Adult Patients With R/R *KMT2A-r* AML After ≥3rd-Line Therapy

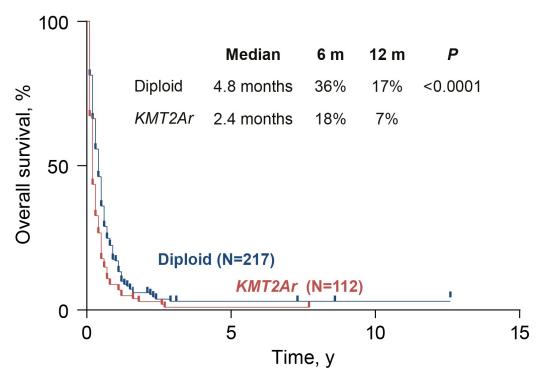


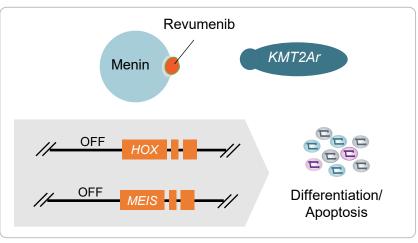
Figure reproduced from Issa GC, Zarka J, Sasaki K, et al. *Blood Cancer J*. 2021;11:162 Creative Commons Attribution (CC BY) license. http://creativecommons.org/licenses/by/4.0/

AML, acute myeloid leukemia; CR, complete remission; HSCT, hematopoietic stem cell transplant; *KMT2Ar*, histone-lysine N-methyltransferase 2A rearrangements; OS, overall survival; R/R, relapsed/refractory. **1.** Issa GC, Zarka J, Sasaki K, et al. *Blood Cancer J*. 2021;11:162.

Revumenib

- The menin-KMT2A interaction is a key driver of leukemogenesis¹
- In a phase 1 study of R/R KMT2Ar and NPM1m acute leukemias, revumenib demonstrated
 - Clinically meaningful responses that were consistent across subgroups²
 - High percentage of responders proceeding to transplant²
 - Manageable safety profile²

Leukemia

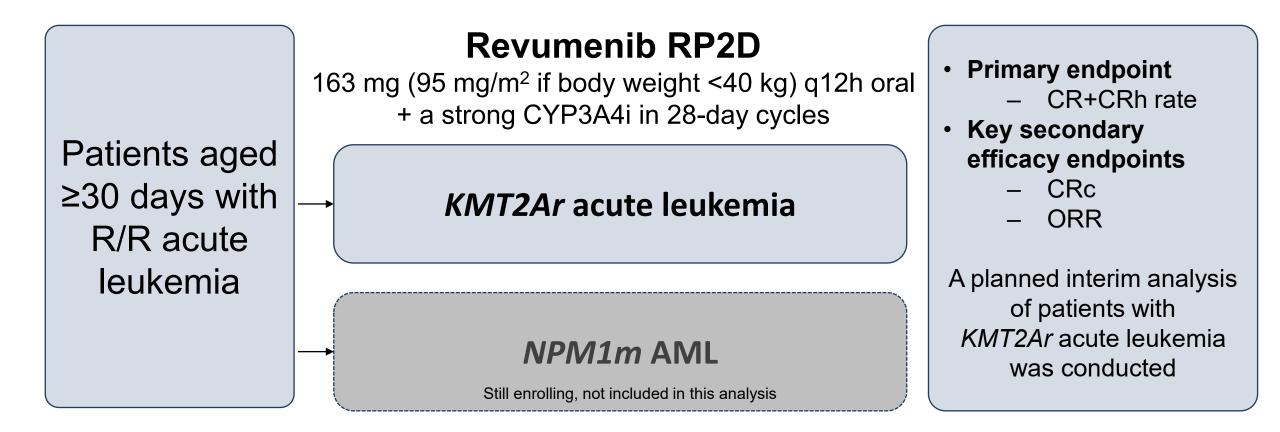

Gene transcription **ON**

Menin inhibition with revumenib

KMT2Ar

MEIS

Menin



Gene transcription OFF

HOX, homeobox; KMT2A, histone-lysine N-methyltransferase 2A; *KMT2Ar*, KMT2A rearrangements; *MEIS*, Meis homeobox; *NPM1m*, nucleophosmin 1–mutated; R/R, relapsed/refractory.

1. Issa GC, Zarka J, Sasaki K, et al. Blood Cancer J. 2021;11:162. 2. Issa GC, Aldoss I, DiPersio J, et al. Nature. 2023;615:920-924.

AUGMENT-101 Phase 2 Study Design

AML, acute myeloid leukemia; CR, complete remission; CRc, CR composite (CR+CRh+CRp+CRi); CRh, CR with partial hematologic recovery; CRi, CR with incomplete hematologic recovery; CRp, CR with incomplete platelet recovery; CYP3A4i, cytochrome P450 3A4 inhibitor; *KMT2Ar*, histone-lysine N-methyltransferase 2A rearrangements; *NPM1m*, nucleophosmin 1–mutated; ORR, overall response rate; q12h, every 12 hours; RP2D, recommended phase 2 dose; R/R, relapsed/refractory.

Patient Demographics

Parameter	Efficacy population (n=57)	Safety population (n=94) ^a
Median age, y (range)	34.0 (1.3–75.0)	37.0 (1.3–75.0)
Age <18 y, n (%)	13 (22.8)	23 (24.5)
Age ≥18 y, n (%)	44 (77.2)	71 (75.5)
Sex, n (%)		
Female	33 (57.9)	56 (59.6)
Race, n (%)		
White	43 (75.4)	68 (72.3)
Non-White	10 (17.5)	14 (14.9)
Unknown	4 (7.0)	12 (12.8)

Data cutoff: July 24, 2023. ^aDefined as patients with *KMT2Ar* acute leukemia having received at least 1 dose of revumenib.

Baseline Characteristics

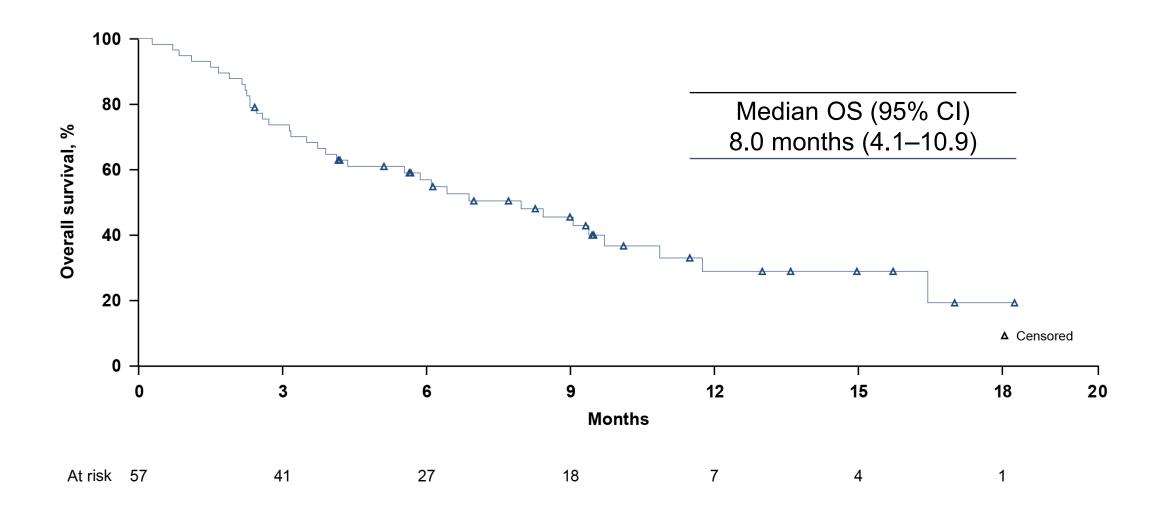
Parameter	Efficacy population (n=57)	Safety population (n=94) ^a
Leukemia type, n (%)		
AML	49 (86.0)	78 (83.0)
ALL	7 (12.3)	14 (14.9)
MPAL/Other	1 (1.8)	2 (2.1)
Disease status at baseline, n (%)		
Primary refractory	14 (24.6)	18 (19.1)
Refractory relapse ^b	32 (56.1)	54 (57.4)
Untreated relapse	11 (19.3)	22 (23.4)
Number of prior lines of therapy, median (range)	2 (1–11)	2 (1–11)
1, n (%)	17 (29.8)	25 (26.6)
2, n (%)	14 (24.6)	28 (29.8)
≥3, n (%)	26 (45.6)	41 (43.6)
Prior HSCT, n (%)	26 (45.6)	47 (50.0)

Data cutoff: July 24, 2023. ^aDefined as patients with *KMT2Ar* acute leukemia having received at least 1 dose of revumenib. ^bDefined as disease unresponsive to most recent salvage treatment.

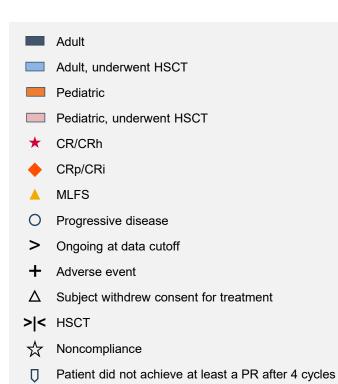
Response to Revumenib

Parameter	Efficacy population (n=57)	Parameter	Efficacy population (n=57)
ORR, n (%)	36 (63.2)	Best response, n (%)	
		CR	10 (17.5)
CR+CRh rate, n (%)	13 (22.8)	CRh	3 (5.3)
95% CI	12.7–35.8	CRi	1 (1.8)
<i>P</i> value, 1-sided	0.0036	CRp	11 (19.3)
CRc	25 (43.9)	MLFS	10 (17.5)
95% CI	30.7–57.6	PR	1 (1.8)
Negative MRD status ^a		PD	4 (7.0)
CR+CRh	7/10 (70.0)	No response	14 (24.6)
CRc	15/22 (68.2)	Other ^b	3 (5.3)

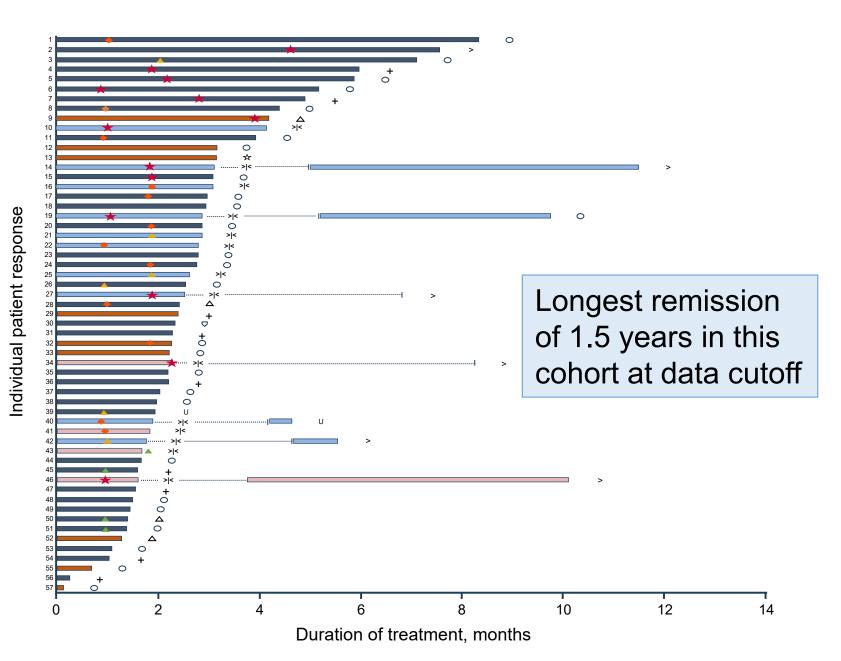
Data cutoff: July 24, 2023. ^aMRD done locally; not all patients had MRD status reported. ^bIncludes patients without postbaseline disease assessment.


CR, complete remission; CRc, composite CR (CR+CRh+CRp+CRi); CRh, CR with partial hematologic recovery; CRi, CR with incomplete hematologic recovery; CRp, CR with incomplete platelet recovery; MLFS, morphological leukemia-free state; MRD, minimal residual disease; ORR, overall response rate (CRc+MLFS+PR); PD, progressive disease; PR, partial remission.

Responses Observed Across KMT2A Rearrangements


_	:	Summary of ORR	Summary of CR+CRh rate	
<i>KMT2A</i> rearrangement/ translocation	n/N	ORR (95% CI)	n/N	CR+CRh rate (95% CI)
9;11	10/11	90.9 (58.7–99.8)	2/11	18.2 (2.3–51.8)
11;19	7/13	53.8 (25.1–80.8)	2/13	15.4 (1.9–45.4)
10;11	5/7	71.4 (29.0–96.3)	2/7	28.6 (3.7–71.0)
6;11	5/7	71.4 (29.0–96.3)	2/7	28.6 (3.7–71.0)
4;11	2/2	100.0 (15.8–100.0)	0/2	0 (0.0–84.2)
1;11	0/2	0 (0.0–84.2)	0/2	0 (0.0–84.2)
Unknown KMT2A fusion partner	5/13	38.5 (13.9–68.4)	4/13	30.8 (9.1–61.4)
Other translocations	2/2	100.0 (15.8–100.0)	1/2	50.0 (1.3–98.7)

CR, complete remission; CRh, CR with partial hematologic recovery; CRi, CR with incomplete hematologic recovery; CRp, CR with incomplete platelet recovery; KMT2A, histone-lysine N-methyltransferase 2A; ORR, overall response rate (CR+CRh+CRp+CRi+MLFS+PR); PR, partial remission.


Overall Survival

Duration of Treatment

U Prohibited concomitant medication

CR, complete remission; CRh, CR with partial hematologic recovery; CRi, CR with incomplete hematologic recovery; CRp, CR with incomplete platelet recovery; HSCT, hematopoietic stem cell transplant; MLFS, morphological leukemia-free state; NR, not reached; PR, partial remission.

Duration of Treatment

Parameter	Patients achieving CR+CRh (n=13)
Median time to CR+CRh, months (range)	1.87 (0.9–4.6)
Median duration of CR+CRh, months (95% CI)	6.4 (3.4–NR)
Proceeded to HSCT, n (%)	14/36 (38.9)
Proceeded to HSCT in CR or CRh	6/14 (42.9)
Proceeded to HSCT in MLFS or CRp	8/14 (57.1)
Restarted revumenib post HSCT, n (%)	7/14 (50.0)

Data cutoff: July 24, 2023.

Revumenib Safety Profile

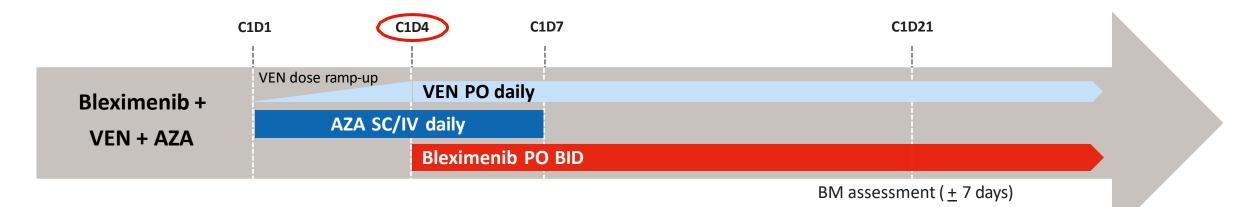
	Safety population (n=94) ^a		
All terms	TEAEs	TRAEs	
Any grade, n (%)	93 (98.9)	77 (81.9)	
≥Grade 3, n (%)	86 (91.5)	51 (54.3)	
Serious AE, n (%)	72 (76.6)	35 (37.2)	
AEs leading to:			
Dose reduction	9 (9.6)	8 (8.5)	
Discontinuation	12 (12.8)	6 (6 4)	
Death	14 (14.9)	4 (4.3)	

Data cutoff: July 24, 2023. ^aDefined as patients with *KMT2Ar* acute leukemia having received at least 1 dose of revumenib.

Revumenib Safety Profile

Any grade TEAEs that occurred in ≥25% patients

All terms, n (%)	Safety population (n=94) ^a
Nausea	42 (44.7)
Febrile neutropenia	36 (38.3)
Diarrhea	33 (35.1)
Vomiting	29 (30.9)
Differentiation syndrome	26 (27.7)
Hypokalemia	26 (27.7)
Epistaxis	25 (26.6)
QTc prolongation	24 (25.5)


Grade ≥3 TEAEs that occurred in ≥10% patients

All terms, n (%)	Safety population (n=94) ^a
Febrile neutropenia	35 (37.2)
Decreased neutrophil count	15 (16.0)
Decreased white blood cell count	15 (16.0)
Decreased platelet count	14 (14.9)
Anemia	17 (18.1)
Differentiation syndrome	15 (16.0)
QTc prolongation	13 (13.8)
Sepsis	11 (11.7)
Hypokalemia	10 (10.6)

Data cutoff: July 24, 2023. ^aDefined as patients with *KMT2Ar* acute leukemia having received at least 1 dose of revumenib.

No patients discontinued due to differentiation syndrome, QTc prolongation, or cytopenias

Bleximenib (JNJ-75276617) Phase 1b Combination Trial in R/R AML: Dosing Schedule

Key Considerations for Dosing

- 28-day treatment cycles
- VEN and AZA administration guided by the approved label
 - Bleximenib does not impact VEN exposures
 - Bleximenib exposure in combination similar to monotherapy
- Bleximenib given BID continuously from C1D4
- Isavuconazole primary antifungal of choice, when indicated
- Hydroxyurea and steroids for DS prophylaxis and treatment permitted

Bleximenib Combination with AZA/VEN

- Phase 1b study demonstrates the combinability of bleximenib with standard doses of VEN and AZA in R/R AML with *KMT2A* or *NPM1* alterations
- Bleximenib combination therapy well tolerated (n=60)
 - DS observed in 3% (2 participants; G3 & G5/DLT)
 - No bleximenib related events of QT prolongation or TLS
- Preliminary clinical activity observed in KMT2Ar and NPM1m R/R AML
 - Efficacy population (n=34; ≥50 mg BID): ORR 79%; CR/CRh/CRi 41%
 - In participants with prior VEN exposure (n=17): ORR 65%; CR/CRh/CRi 29%
- Phase 1 dose escalation ongoing to identify RP2D
 - Exploration of bleximenib in combination with AML directed therapies ongoing in this study (NCT05453903):
 - Newly diagnosed fit AML: bleximenib + '7+3'; newly diagnosed unfit AML (bleximenib + VEN + AZA) participants
 - Doublet combinations (bleximenib + VEN or AZA) in relapsed/refractory cohorts

AML, acute myeloid leukemia; AZA, azacitidine; BID, twice daily; CR, complete remission; CRh, complete remission with partial hematologic recovery; DLT, dose-limiting toxicity; DS, differentiation syndrome; G, Grade; *KMT2A*, histone-lysine N-methyltransferase 2A; *KMT2Ar*, rearrangement of histone-lysine N-methyltransferase 2A; *NPM1*, nucleophosmin 1; *NPM1*m, nucleophosmin 1 mutations; ORR, overall response rate; R/R, relapsed/refractory; RP2D, recommended Phase 2 dose; TLS, tumor lysis syndrome; TRAE, treatment-related adverse event; VEN, venetoclax.

Bleximenib (JNJ-75276617) Phase 1b Combination Trial in R/R AML: Change in Leukemic Burden (N=34)

* CR/CRh/CRi ■ KMT2A ■ NPM1 100 90 80 70 60 · Best Relative Change from Baseline (%) 50 40 -30 -20 -10 -0 --10 · -20 --30 --40 · -50 --60 · -70 -80 -90 -100 * * -110

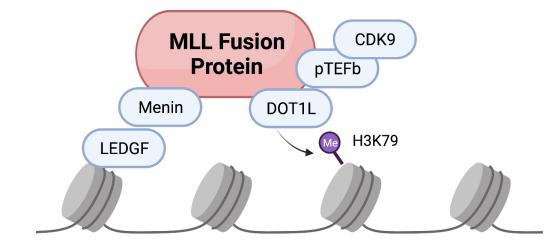
Best Relative Percent Change in BM Blasts

34 participants in efficacy population

- 13 KMT2Ar
- 21 *NPM1* m
- All participants with observed reduction in leukemic burden
- 93% of participants with ≥50% reduction in BM blasts
- Reductions observed in both KMT2Ar or NPM1m

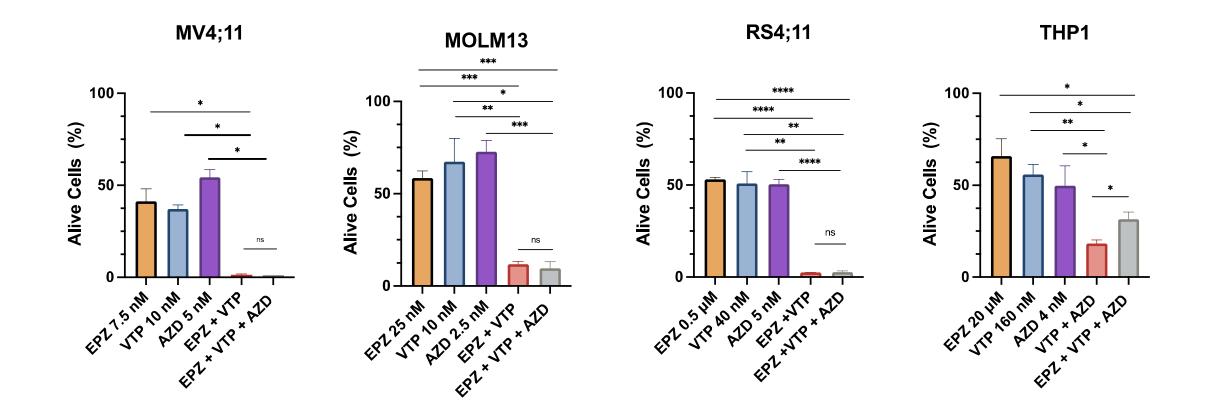
4 participants without DE not included in waterfall plot

Data cut-off: May 7, 2024.


Bars are only presented for participants where measurable change from baseline was available; each bar represents a unique participant.

AE, adverse event; AML, acute myeloid leukemia; BM, bone marrow; CR, complete remission; CRh, complete remission with partial hematologic recovery; CRi, complete remission with incomplete hematologic recovery; DE, disease evaluation; KMT2Ar, rearrangement of histone-lysine N-methyltransferase 2A; NPM1m, nucleophosmin 1 mutations; PD, progressive disease; R/R, relapsed/refractory.

AUGMENT-101: Menin Inhibitor SNDX-5613 (Revumenib) Phase 1 Study


AUGMENT-101

Best Response	Efficacy Population (N=60)
Response	
Overall response rate ¹ , n, (%)	32 (53%)
CR/CRh	18 (30%)
CR	12 (20%)
CRh	6 (10%)
CRp	5 (8%)
MLFS	9 (15%)
MRD ^{neg}	
CRc MRD ^{neg} Rate ²	18/60 (30%)
within CR/CRh MRD ^{neg} n, (%)	14/18 (78%)
within CR/CRh/CRp MRD ^{neg} n, (%)	18/23 (78%)
KMT2Ar	
Overall response rate ¹ , n, (%)	27/46 (59%)
CR/CRh	15/46 (33%)
mNPM1	
Overall response rate ¹ , n, (%)	5/14 (36%)
CR/CRh	3/14 (21%)

¹Overall Response Rate = CR+CRh+CRp+MLFS; ²CR+CRh+CRp; MRD status assessed locally by PCR or MCF

- 1. Chandrasekharappa et al. Science 1997.
- 2. Yokoyama et al. Cell 2005.
- 3. Krivstov et al. Cancer Cell 2019
- 4. Issa et al. Nature 2023.

Three-drug combinations of menin, DOT1L, and CDK9 inhibitors

Menin Inhibitor Conclusions

- Menin inhibitors are effective and safe in pediatric and adult patients with R/R *KMT2A*-rearranged and NPM1-mutated leukemia.
- Durable MRD-negative remissions were observed in responders.
- Differentiation syndrome occurs with menin inhibitors.
- Discontinuations and dose reductions due to TRAE or TEAEs were low.
- Combination therapies with AZA/VEN are promising.
- A New Drug Application for revumenib in KMT2Arearranged leukemia has been initiated under the FDA Real-Time Oncology Review program based on these data.

Acknowledgments

- Aysenur Esen
- Roger Luo
- Joseph Kaberlein
- Matthieu Brutus

THE UNIVERSITY OF CHICAGO