
## The No-Name Cancer Tumor-Agnostic→Rare→Ultra-Rare→N-of-1

#### Razelle Kurzrock MD

Associate Director, Clinical Research, MCW Cancer Center and Genome Science and Precision Medicine Center (GSPMC)
Linda T. and John A. Mellowes
Chair of Precision Oncology
Founding Director, Michels Rare Cancers Research Laboratories
Froedtert and Medical College of Wisconsin
Chief Medical Officer, Equal Opportunity and Diversity Officer

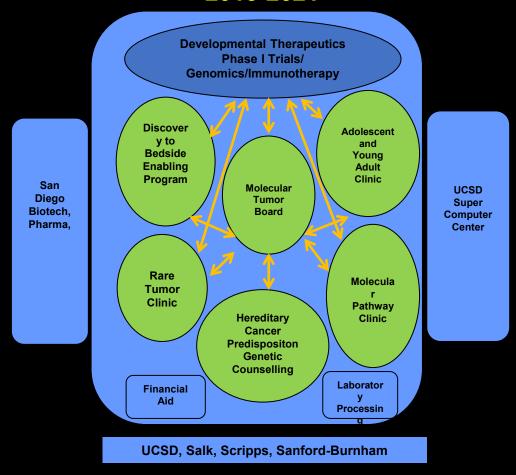
WIN Consortium for precision medicine (non-profit)







#### **Disclosures**


#### 2019 to present

- Research funding from Boehringer Ingelheim, Debiopharm, Foundation Medicine, Genentech, Grifols, Guardant, Incyte, Konica Minolta, Medimmune, Merck Serono, Omniseq, Pfizer, Sequenom, Takeda, and TopAlliance;
- Consultant and/or speaker fees and/or advisory board for Actuate Therapeutics, AstraZeneca, Bicara Therapeutics, Inc., Biological Dynamics, Caris, Datar Cancer Genetics, LabCorp, Lanuaria, Merck, NeoGenomics, Neomed, Pfizer, Precirix, Prosperdtx, Regeneron, Roche, TD2/Volastra, Turning Point Therapeutics, X-Biotech
- Equity interest in CureMatch Inc. and IDbyDNA
- Serves on the Board of CureMatch and CureMetrix, and is a co-founder of CureMatch.

FUNDING: RK is funded in part by 5U01CA180888-08 and 5UG1CA233198-05,

#### **Precision Medicine in the Clinic: Experience**

## Founder and Director: Center for Personalized Cancer Therapy at UCSD Moores Cancer Center 2013-2021



Founder and Chair, Dept of Investigational Cancer Therapeutics, MD Anderson Cancer Center 2004-2012

#### **Phase I Trials / Patients Enrolled**



- Over 950 peer-reviewed publications
- Oversight >500 early phase trials, including 8 drugs that have gone to FDA approval
- Clinical-grade genomic profiling >21,000 patients
- Leadership positions: SWOG, WIN, NCCN,

Molecular profiling (N ~ 21,000 patients)

## Take-home point

At the multi-omic level, every metastatic tumor is unique and complex

Tumor of origin→Rare→ ultra-rare→ N-of-1

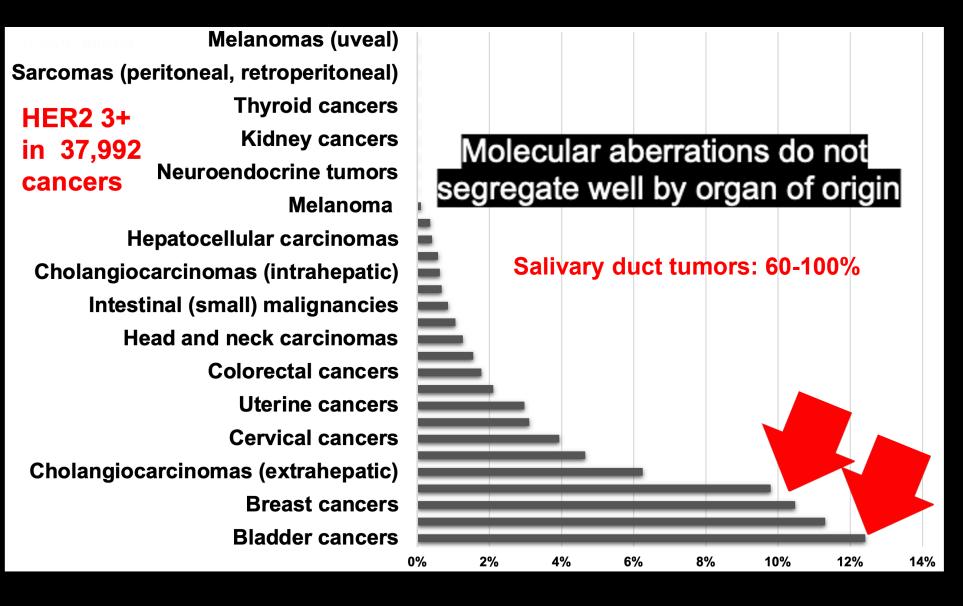
# The Light Microscope Invented in 1590 Still used to diagnose cancer



#### Traditional method of deciding therapy based on clinical trials



## Next Gen Sequencing Actionable Cancer Gene Sequencing [CLIA] The Molecular Microscope


| ABL1     | BRCA2   | CSMD2   | EZH2         | GNAS     |
|----------|---------|---------|--------------|----------|
| ACVR1B   | CARD11  | CSMD3   | FAM123B      | HDAC9    |
| ADAMTS12 | CASP8   | CTNNB1  | FAM135B      | HEATR7B2 |
| AKAP3    | CBL     | CYLD    | FAT3         | HGF      |
| AKT1     | CD19    | CYP2C19 | FBXW7        | HMCN1    |
| ALK      | CDH1    | DAXX    | FGFR1        | HNF1A    |
| APC      | CDH10   | DDR1    | FGFR2        | HNF1B    |
| AR       | CDH11   | DDR2    | FGFR3        | HRAS     |
| ARAF     | CDK4    | DNMT3A  | FGFR4        | HYDIN    |
| ARID1A   | CDK6    | EGFR    | FLG          | IDH1     |
| ASXL1    | CDKN2A  | ELN     | FLT1         | IDH2     |
| ATM      | CEBPA   | EML4    | FLT3         | IGF1R    |
| ATR      | CHEK1   | EP300   | FLT4         | IKZF1    |
| ATRX     | CHEK2   | EPHA3   | FOXL2        | IL6R     |
| AURKA    | COL14A1 | ERBB2   | GABRA6       | IRS1     |
| AURKB    | CPAMD8  | ERBB3   | GABRB3       | ITGA4    |
| BAI3     | CREBBP  | ERCC3   | GATA1        | JAK1     |
| BAP1     | CRIPAK  | ERCC4   | <b>GATA3</b> | JAK2     |
| BRAF     | CSF1R   | ERCC5   | GNA11        | JAK3     |
| BRCA1    | CSMD1   | ETV5    | GNAQ         | KCNB2    |
|          |         |         |              |          |

| KDM6A  | MLL3   | PAX5    | PTPN11  | STK11            |
|--------|--------|---------|---------|------------------|
| KDR    | MPL    | PBRM1   | RAD51   | SYK              |
| KIT    | MSH2   | PCDH15  | RAF1    | SYNE1            |
| KRAS   | MSH6   | PCLO    | RB1     | SYNE2            |
| LAMA1  | MTOR   | PDGFRA  | RELN    | TBC1D4           |
| LPHN3  | MYD88  | PDGFRB  | RET     | TET2             |
| LRP1   | NAV3   | PIK3CA  | RIMS2   | TGFb1            |
| LRP1B  | NCOR1  | PIK3CG  | RNF213  | TGFBR2           |
| LRP2   | NF1    | PIK3R1  | RUNX1   | TNFAIP3          |
| MAP2K1 | NF2    | PIKFYVE | RUNX1T1 | TOP1             |
| MAP2K4 | NFKB2  | PKHD1   | RYR2    | TOP2A            |
| MAP3K1 | NOTCH1 | PKHD1L1 | SETD2   | TP53             |
| MAP3K4 | NOTCH2 | PPP1R3A | SMAD4   | TSC1             |
| MDN1   | NOTCH3 | PPP2R1A | SMARCA4 | TSC2             |
| MECOM  | NOTCH4 | PPP2R4  | SMARCB1 | TSHR             |
| MEN1   | NPM1   | PRDM1   | SMO     | USH2A            |
| MET    | NRAS   | PRSS1   | SOS1    | VHL              |
| MITF   | NSD1   | PTCH1   | SPEN    | WHSC1            |
| MLH1   | PALB2  | PTEN    | SPOP    | WT1              |
| MLL2   | PAPPA2 | PTK2    | SPTA1   | ZNF238<br>ZNF536 |

#### **Breathtaking Progress Unparalleled in Human History**

| Genome sequenced (publication year)    | HGP (2003)    | Venter (2007) | Watson (2008)   | Current (2015) |
|----------------------------------------|---------------|---------------|-----------------|----------------|
| Time taken (start to finish)           | 13 years      | 4 years       | 4.5 months      | ~1 days        |
| Number of scientists listed as authors | > 2,800       | 31            | 27              |                |
| Cost of sequencing (start to finish)   | \$2.7 billion | \$100 million | < \$1.5 million | ~\$1000        |
| Coverage                               | 8-10 ×        | 7.5 ×         | 7.4 ×           | 30-50X         |
| Number of institutes involved          | 16            | 5             | 2               |                |
| Number of countries involved           | 6             | 3             | 1               |                |

#### The Reclassification of Cancer



HER2 aberrations in cancer: implications for therapy
Yan M.....Kurzrock R. Cancer Treatment
Reviews 2014

Yan M,....Kurzrock R.
HER2 expression status
in diverse cancers:
review of results from
37,992 patients.
Cancer Metastasis
Review. 2015

### Trastuzumab deruxtecan (Enhertu)



April 5 2024
Solid tissue-agnostic
Approval
HER2 IHC3+



**Antibody-drug Conjugate** 

#### NO NAME CANCER Genomics IS the Diagnosis

> JAMA Oncol. 2016 Jun 1;2(6):719-20. doi: 10.1001/jamaoncol.2016.0078.

Universal Genomic Testing Needed to Win the War Against Cancer: Genomics IS the Diagnosis

Vivek Subbiah <sup>1</sup>, Razelle Kurzrock <sup>2</sup>

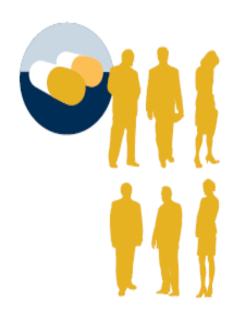
# Universal Germline and Tumor Genomic Testing Needed to Win the War Against Cancer: Genomics Is the Diagnosis

Vivek Subbiah, MD<sup>1,2</sup> and Razelle Kurzrock, MD<sup>3,4</sup>



# Evolution of Clinical Trial Design




#### Redesigning Cancer Trials: Stage 1

#### Smaller Trials, Bigger Chance for Success

**OLD MODEL:** Large numbers of patients, not selected by molecular characteristics; lower chance of demonstrating effectiveness, since many participants do not have the molecular defects being targeted



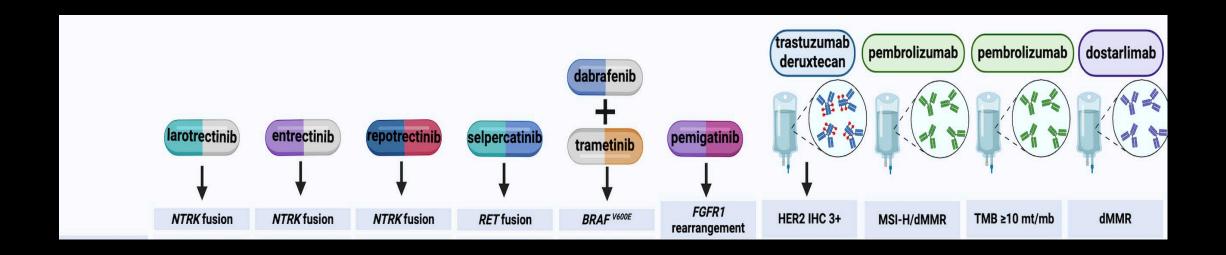
**NEW MODEL:** Small patient populations, all with the relevant mutations or genetic defects; greater chance of desired results, since all participants have the potential to respond



## Tumor-agnostic basket trials



#### FDA approves pembrolizumab (anti-PD1) for solid tumors based on MSI-H (RR ~45%)

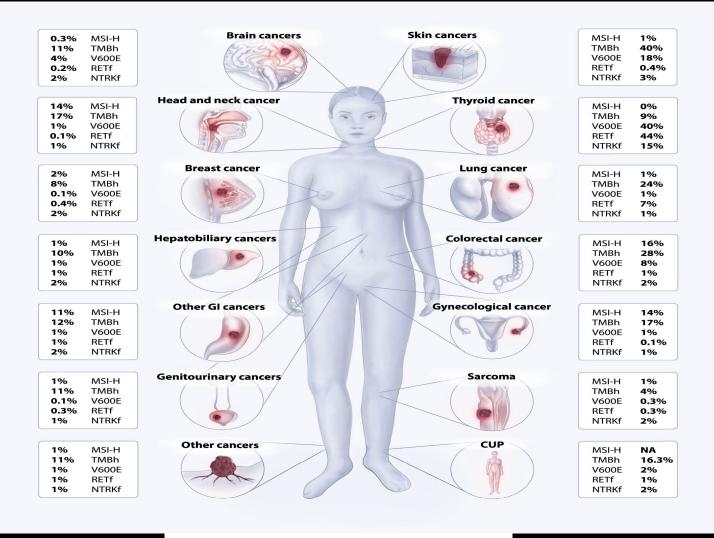

May 23, 2017

Tissue agnostic approval
 Approval based on genomic marker
 Approval based on retrospective/real-world data



## Ten Tumor-Agnostic Precision Medicine

2 more expected this year (KRAS G12C, NRG1)




## Pemigatinib for FGFR1 rearranged myeloid lymphoid neoplasms



Heme-agnostic

August 26, 2022



## CA: A Cancer Journal for Clinicians The flagship journal of the American Cancer Society

REVIEW ARTICLE ☐ Open Access ☐ ⓒ 🛊 😑 💲

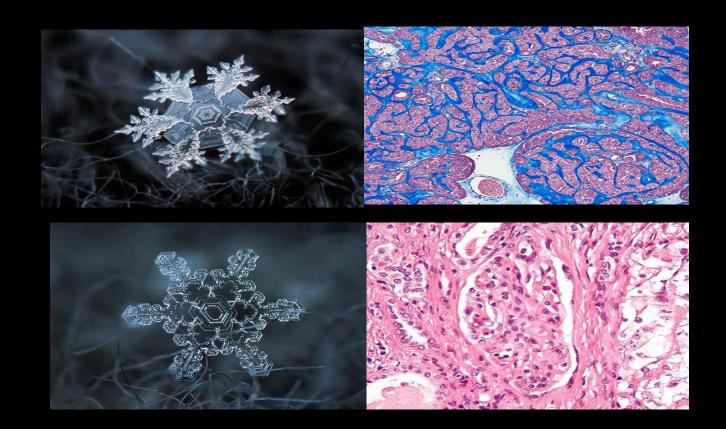
The evolving landscape of tissue-agnostic therapies in precision oncology

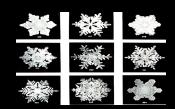
Vivek Subbiah MD 💌 Mohamed A. Gouda MD, Bettina Ryll MD, PhD, Howard A. Burris III MD, Razelle Kurzrock MD

First published: 30 May 2024 | https://doi.org/10.3322/caac.21844

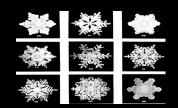
## But wait!! There's more!!




## N-of 1 clinical trial design


- → Multi-Omic interrogation
- Personalized combination therapies




### What if every metastatic cancer is different?

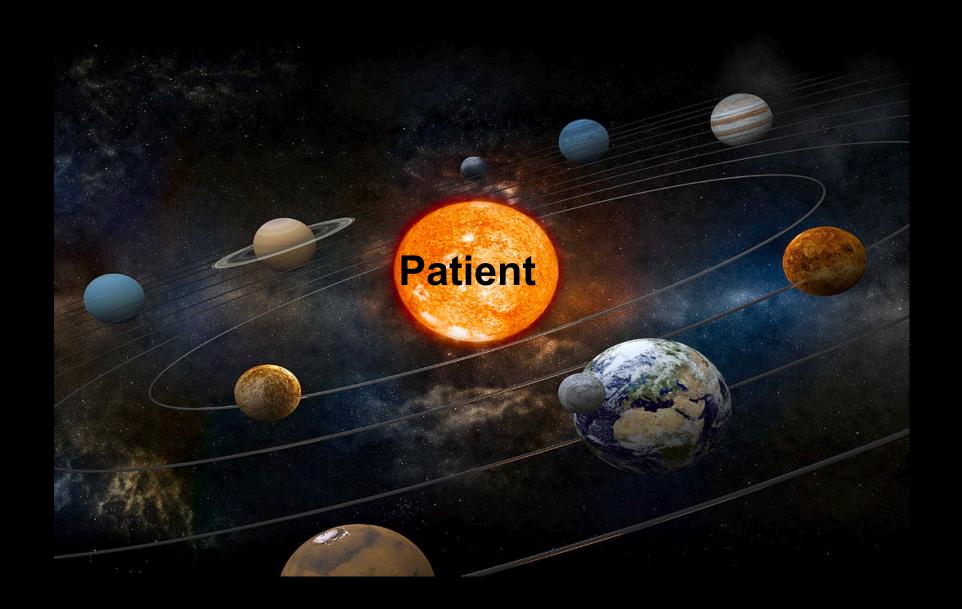
## Malignant Snowflakes Each is complex and distinct





#### Malignant Snowflakes Metastatic Breast Cancer




#### Pt number

#### Molecular Results (236 genes; NGS)—Breast Cancer

PIK3CA amplification, SOX2 amplification, TP53 G302fs\*42, FLT3 L260\* 2 AKT1 (E17K) EGFR amplification, CCND1 amplification, CDKN2A/B loss, 4 FGFR1 amplification, MYC amplification, TP53 P151A ERBB2 amplification, PIK3CA H1047L, AURKA amplification, TP53 R342P, 42 CREBBY POSSS, ZNF217 amplification ERBB2 amplification MYC amplification, CDK6 amplification, TP53 R213\* 25 **ESR1 Y537S** 13 GATA3 \*445fs\*2+ 16 RET C634R, GATA3 P436fs\*11+ 18 AKT3 amplification, MYC amplification, MYCL1 amplification, TP53 R248Q NF1 R1276Q 54

Wheler....Kurzrock. Oncotarget. 2014: Wheler....Kurzrock. Cancer Research, 2014; Kurzrock Giles. Cell Cycle. 2015





## Major treatment approaches

#### **Genomic strategy:**

- Treat earlier in the disease
- Attack the drivers such as fusions
- Hit all the drivers at once—cut all the Hydra's heads

#### The Pillars of Precision/Personalized Medicine

#### Genomics Immunotherapy



#### **Immunotherapy strategy**

- Activate the immune system to kill the tumor
- Precision immunotherapy—know how the tumor has exploited the immune system

## I-PREDICT N-of-1 approach

## First N-of One Study

Prospective Investigation of Profile-Related Evidence Determining Individualized Cancer Therapy

#### Study Novelty

- Customized combinations
- Newly diagnosed patients with lethal advanced malignancies

**Activation Date:** February 13, 2015

**Consented:** *N* = 506 **Treated:** *N* = 291

#### **Treatment Decisions Guided by:**

FoundationOne (Heme), Foundation ACT (ct DNA), PD-1/PDL-1 IHC, Tumor Mutational Burden,



PI: Jason Sicklick, MD, FACS Associate Professor of Surgery Division of Surgical Oncology



PI: Razelle Kurzrock, MD Director, Center for Personalized Cancer Therapy

Avera PI:
Brian LeylandJones

## **Master Protocol**

Investigation of Profile-Related Evidence Determining

**Individualized Cancer Therapy** 

### I-PREDICT

Basket



- Histology-Independent targeted approach
- Multiple molecular aberrations assessed
- Patients matched with targeted agents

Umbrella

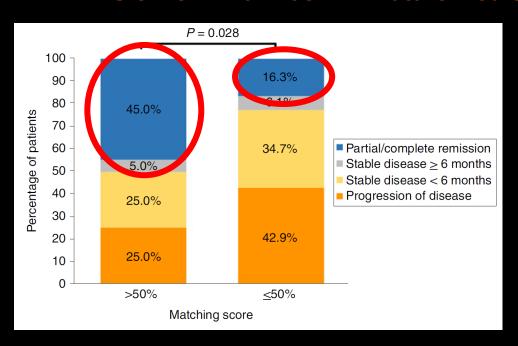


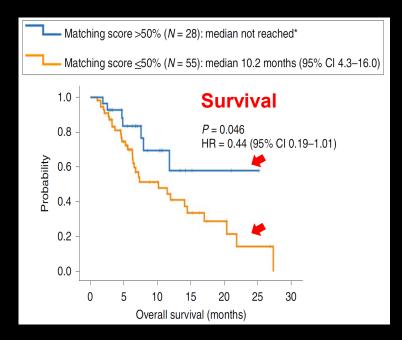
### **I-PREDICT Study**

Patients with aggressive malignancies

Molecular profiling

Discussion at the Molecular Tumor Board


Treating physician determines treatment plan

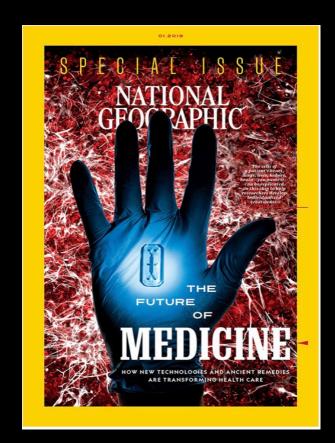

High matching"
>50% of markers targeted
(e.g. Patient with 4 alterations,
therapy targeting 3 alterations (3/4=75%)

Low matching"
≤50% of markers targeted
(e.g. Patient with 4 alterations,
therapy targeting 1 alteration (1/4=25%)

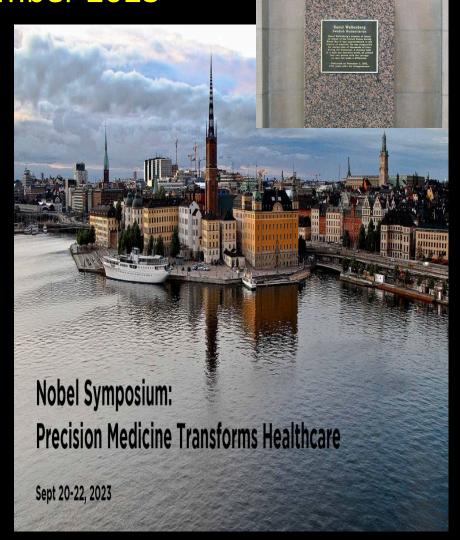
### **IPREDICT Study: Metastatic, treatment refractory**

#### Sicklick...Kurzrock R. Nature Medicine 2019









Higher matching score (>50%) translated into significantly better response rate, progression-free survival and overall survival

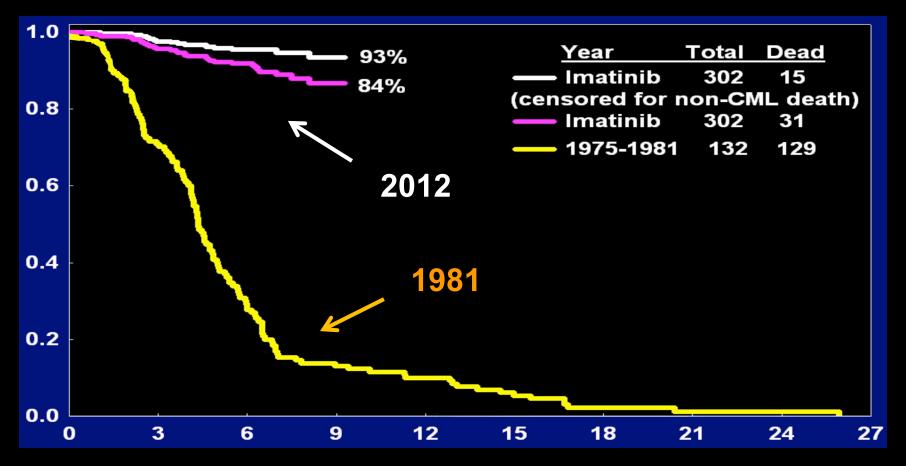


I-PREDICT featured in National Geographic and in NIH Director's Blog;
Presented at Nobel Symposium September 2023

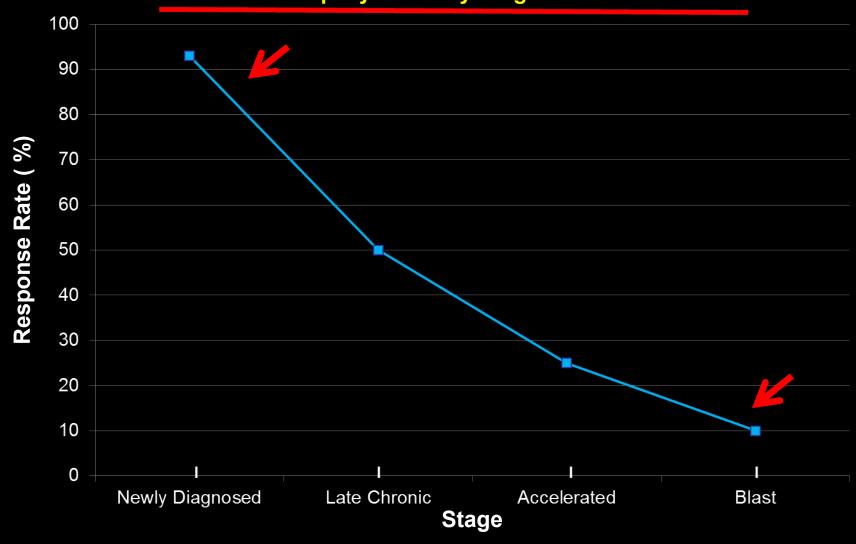







# Leukemia (CML) Story A Fatal Disease Transformed



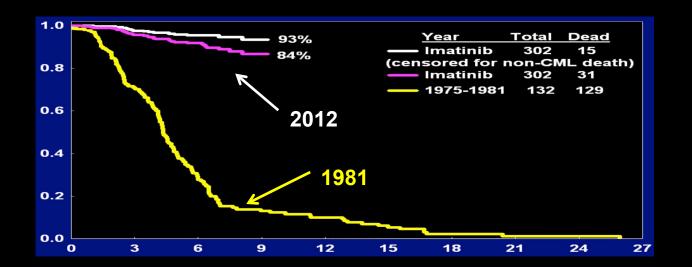

TREAT EARLY

## Lessons from the Chronic Myelogenous Leukemia (CML) Story A Fatal Disease Transformed

- Median survival in 1980s was about 4 years
- Median survival in 2012 is 20+ years



#### Response Rate of Chronic Myelogenous Leukemia Rises Rapidly in Newly Diagnosed Disease



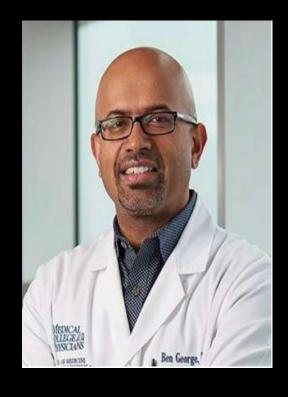

## Key factors leading to the revolution in outcome of chronic myelogenous disease

#### Key factors:

- Known driver target (Bcr-Abl)
- Targeted agent (imatinib)

### -Treat newly-diagnosed patients



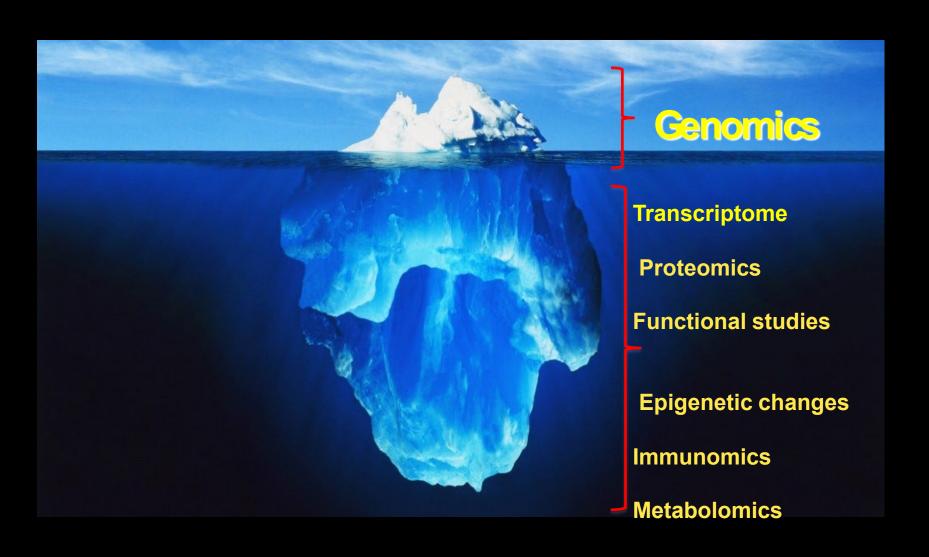

### Solid Tumor Metastases = Blast Crisis in Leukemia

The future of I-PREDICT is to treat patients at diagnosis before heterogeneity occurs



# MCW I-PREDICT N-of-1 in newly diagnosed cancer

Neoadjuvant






**Approved** 

Pls: Ben George, MD and R Kurzrock MD

## Tip of the Iceberg



# Super-Responders

## 62-year-old man with poorly differentiated carcinoma of unknown primary

**Treatment history:** 

No systemic or local therapy.

cfDNA:

KRAS T20A → Trametinib (MEK inhibitor ARID1A Splice site SNV → Olaparib (PARP inhibitor)

**Tissue NGS:** Insufficient sample

Consented on I-PREDICT protocol (NCT02534675)

## 62-year-old man with poorly differentiated carcinoma of unknown primary



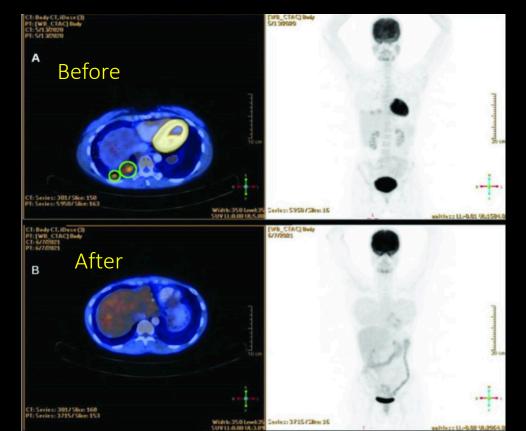
Mid-upper chest wall mass

**PFS 26 months** 

#### DISCOVERY IN REAL TIME



#### Fibrolamellar Cancer


- DNAJB1-PRKACA→ a driver fusion, not yet druggable
- Exploiting multi-omics
- Transcriptomics/bioinformatics to explore synthetic lethality

doi: 10.1136/jitc-2022-005620.

# Fibrolamellar carcinoma transcriptomic-based treatment prediction: complete response after nivolumab and ipilimumab

Raanan Berger <sup># 1</sup>, Gal Dinstag <sup>2</sup>, Omer Tirosh <sup>2</sup>, Eyal Schiff <sup>2</sup>, David Kleiner <sup>3</sup>, Kenneth D Aldape <sup>3</sup>, Eytan Ruppin <sup>4</sup>, Tuvik Beker <sup># 5</sup>, Razelle Kurzrock <sup># 6</sup>

Affiliations I supposed



#### Non-Intuitive

- Low TMB
- PD-L1 negative
- Failed anti-PDL1
- Undruggable DNAJB1-PRKACA fusion



2+ years complete remission

#### Undruggable fusions: Solution

- Look at RNA expression for targets
- Perform immunomic analysis for immunotherapy choice
- IHC panel: AR, ER, HER2, PD1, PDL1, FOLR1, Claudin18.2, Nectin4, Trop2, EGFR, LAG3, MGMT —> for antibody-drug conjugates
- Functional testing
- Bioinformatics: synthetic lethality, etc

#### What about the host?

Host and Toxicity/Response/Immunity/Microenvironments



# Take-home points Patient Rights

- Right drug(s)
- Right patient
- Right time
- Right dose
- Right place

#### NO NAME CANCER Genomics IS the Diagnosis

> JAMA Oncol. 2016 Jun 1;2(6):719-20. doi: 10.1001/jamaoncol.2016.0078.

Universal Genomic Testing Needed to Win the War Against Cancer: Genomics IS the Diagnosis

Vivek Subbiah <sup>1</sup>, Razelle Kurzrock <sup>2</sup>

# Universal Germline and Tumor Genomic Testing Needed to Win the War Against Cancer: Genomics Is the Diagnosis

Vivek Subbiah, MD1,2 and Razelle Kurzrock, MD3,4



### Looking into the Future



# **BEYOND CANCER Changing the lives of**

patients

**Bladder Cancer** 



**Dwarfism** 

FGFR3
Mutation





Clinical trial with FGFR inhibitor infigratinib

#### There are $\sim$ 7,000 rare diseases.

- Global numbers: ~350 million patients with a rare disease.
- <u>US and Europe:</u> ~60 million people with rare diseases.

#### PRECISION MEDICINE: 2033

#### **ILLNESS**

- SAME DAY MULTI-OMIC SEQUENCING
- IN SILICO MODELING DECIPHERS ABNORMALITY AND NEEDED COMPOUND



 COMPOUND INSTANTLY CREATED THROUGH CLICK CHEMISTRY AND 3-D PRINTING

Oncotarget. 2016 Jan 19; 7(3): 2155-2158.

Published online 2015 Dec 29. doi: 10.18632/oncotarget.6787

Click chemistry, 3D-printing, and omics: the future of drug development

Razelle Kurzrock<sup>1</sup> and David J. Stewart<sup>2</sup>

#### Thanks to Patients and Precision Medicine Team

Questions??

X @Dr\_R\_Kurzrock

teoam2011@gmail.com

rkurzrock@mcw.edu

#### **KurzrockLab Collaborators**



