

APPROACHES AND TREATMENT OF RARE PLASMA CELL DYSCRASIAS: MGCS, POEMS SYNDROME, CASTLEMAN DISEASE AND AMYLOIDOSIS

Angela Dispenzieri, M.D. Serene M. and Frances C. Durling Professor of Medicine & of Laboratory Medicine

Scottsdale, Arizona

Rochester, Minnesota

University of Indianapolis August 24, 2024

Jacksonville, Florida

Mayo Clinic College of Medicine Mayo Clinic Comprehensive Cancer Center

DISCLOSURES

Company	Disclosure
Celgene, Takeda, Pfizer, Alnylam, Caelem, Janssen	Research dollars
Intellia, Caelem, Janssen HaemalogiX	Ad board

GOALS

- 1. Recognize these rare entities
 - MGCS mostly plasma cell driven, occasionally LPD driven
 - Castleman's disease occasionally associated with clonal plasma cell disorder, but more often not

- 2. Understand treatment options
- 3. Realize importance of systematic follow-up

OUR WORK FOR TODAY

MGCS, monoclonal gammopathy of clinical significance; LPD, lymphoproliferative disorder; PCD, plasma cell disorder; MGRS, monoclonal gammopathy of renal significance; MGDS, monoclonal gammopathy of dermal significance; MGNS, monoclonal gammopathy of neural significance; UCD, unicentric Castleman's disease; iMCD, Idiopathic multicentric Castleman's disease; TAFRO, thrombocytopenia, anasarca, fever, fibrosis (marrow), renal dysfunction, organomegaly

GENERAL COMMENTS

- Majority of the MGCS are deposition diseases
- Many of the MGCS are predominantly single organ
- Although considerable morbidity, mortality and rates of overt malignancy are rare for most conditions
- How much of these diseases relates to "an unlucky monoclonal protein" rather to a distinctly different plasma cell clone is unknown

DRIVERS OF MGCS?

Plasma cell (or lymphoid clone)

Plasma cell microenvironment

Target tissue Target tissue **Humoral mediators** microenvironment cells Antibodies Cytokines or chemokines

DADS, distal acquired demyelinating symmetric neuropathy with M protein; CANOMAD, chronic ataxic neuropathy, ophthamoplegia, IgM, cold agglutinins, and disialosyl antibodies; PGNMID, proliferative glomerulonephritis with monoclonal immunoglobulin deposits

CASE 1: MR. AI

- Mid 2014: beginning of paresthesias and a 20 kg weight loss between 2014 and 1/2015.
- January February 2015: Anorexia and nausea/vomiting—additional 10 Month kg weight loss.
 -19
 - Hb 12.8 Cr 1.4, TSH 4.9, AM cortisol 7.6 (borderline). CRP normal. Vitamin B12 1141.
 - SPEP w/o IFE was normal, lambda FLC 6.22; ratio of 0.3987
 - PET and CT chest/abdomen/pelvis: unremarkable.
 - EGD/colonoscopy: unremarkable. No amyloid

- April November 2015: progressive muscle weakness, cachexia/weight loss, and demyelinating neuropathy.
 - Profound volume overload that was presumed to be related to AKI from AIN (ceftriaxone) with a creatinine up to 2.3. <u>"MGUS."</u>

 12/10 -12/30/2015: hospitalized for severe malnutrition (>30 kg weight loss) with anasarca

Month

-1

MGCS – PERIPHERAL NERVE PRESENTATION

DADS, distal acquired demyelinating symmetric neuropathy with M protein; CANOMAD, chronic ataxic neuropathy, ophthamoplegia, IgM, cold agglutinins, and disialosyl antibodies

Modified from Dispenzieri ASH education book 2020

• Progressive demyelinating sensorimotor neuropathy, adrenal insufficiency, ascites, pleural effusions, IgA λ (536 mg/dL), lipodystrophy, estimated PA pressure 64/20, and VEGF 320 pg/mL

Both 1 and 2 present

MAJOR CRITERIA	1. Polyneuropathy 2.Monoclonal plasma cell dyscrasia (almost always λ)			
	 3. Sclerotic bone lesions At least one of 3-5 4. Castleman's disease present 5. Vascular endothelial growth factor elevation 			
MINOR	6. Organomegaly (splenomegaly, hepatomegaly, or LA)			
CRITERIA	7. Endocrinopathy			
At least 1 of 6-11	 8. Skin changes (hyperpigmentation, hypertrichosis, glomeruloid hemangiomata, plethora, acrocyanosis, flushing, white nails) 9. Papilledema 			
present	10. Extravascular volume overload (edema, pleural eff, or ascites)			
	11. Thrombocytosis / polycythemia			

* Polyneuropathy and monoclonal plasma cell disorder present in all patients; to make diagnosis <u>at least</u> one other major criterion and 1 minor criterion is required to make diagnosis

THERAPY OF MGCS – NERVE (MOSTLY ANECDOTAL)

	1 st line	2 nd line	Other
AL amyloidosis	Dara-CyBorD +/- ASCT	Clone directed therapy	Supportive care
POEMS	Clone directed therapy	Clone directed therapy	Supportive care
Cryoglobulinemia	Treat underlying cause	Rituximab	
DADS-M	Intravenous gammaglobulin	Rituximab	
CANOMAD	Intravenous gammaglobulin	Clone directed therapy	3 rd line: clone directed therapy
SLONM*	Intravenous gammaglobulin	Clone directed therapy	

DADS, distal acquired demyelinating symmetric neuropathy with M protein CANOMAD, chronic ataxic neuropathy, ophthamoplegia, IgM, cold agglutinins, and disialosyl antibodies SLONM, sporadic late onset nemaline myopathy; * not nerve, but muscle but presents motor

Management of iMCD

CASE 2: MS. VGL

VGL: FEMALE MG AND RENAL ISSUES

•Age 31: Proteinuria 1700 mg/24 hr and IgG lambda 0.5 g/dL: August 1987

International Kidney & Monoclonal Gammopathy Research Group

http://www.ikmgresearchgroup.com

MONOCLONAL GAMMOPATHY OF <u>RENAL</u> SIGNIFICANCE

PGNMID, proliferative glomerulonephritis with monoclonal immunoglobulin deposits

Dispenzieri ASH education book 2020

MONOCLONAL GAMMOPATHY OF RENAL SIGNIFICANCE (MGRS)

PGNMID, proliferative glomerulonephritis with monoclonal immunoglobulin deposits; LCPT, light chain proximal tubulopathy; MIDD, monoclonal immunoglobulin deposition disease Modified from Bridoux F,. *Kidney Int*. 2015;87(4):698-711. Leung, N., *Nat Rev Nephrol* 15, 45–59 (2019).

MONOCLONAL GAMMOPATHY OF RENAL SIGNIFICANCE (MGRS)

PGNMID, proliferative glomerulonephritis with monoclonal immunoglobulin deposits; LCPT, light chain proximal tubulopathy; MIDD, monoclonal immunoglobulin deposition disease Modified from Bridoux F,. *Kidney Int*. 2015;87(4):698-711. Leung, N., *Nat Rev Nephrol* 15, 45–59 (2019).

VGL: FEMALE MGRS: PGNMID

Date	Cr	24-hour urine TP	Ser M-spike/ FLC / BMPC	Intervention / Comment
9/1988	1.5	1700	0.5 g/dL	Biopsy MPGN; Observation
1/2002	4.0	7726	0.6 /-/-	CTX / Pred x 6 months
10/2002	4.0	1900	0.6 /-/-	Renal transplant
11/2002	2.5	3272	0.6/-/15%	Renal biopsy: recurrent disease; Pheresis/ Medrol→ pred
7/2003	2.8	14000		Pheresis; S. Aureus infection → 4 month dialysis
1/2005	2.5	1795	1.2 ; 173 mg/dl /20%	ASCT with plan to do second renal Tx
4/2005	1.7	760	0; 56 mg/dL; 5%	No need for second kidney ©

THERAPY OF MGRS (MOSTLY ANECDOTAL)

	1 st line	2 nd line	Kidney Tx
AL amyloidosis	Dara-VCD	Clone directed Rx	Good outcomes
MIDD	Clone directed Rx ²		Good outcomes
Cryoglobulinemia	Underlying dz; emergency PE, high-dose steroids	Rituximab	Good outcomes
LCPT	Clone directed Rx ³		Mixed ⁶
Immunotactoid GN	Clone directed Rx ⁴		
C3GN with mlg	Clone directed Rx ⁵		Mixed ^{5,6}
PGNMID	Clone directed or Clone directed Rx ¹ M Rituximab ¹		Mixed ⁷

http://www.ikmgresearchgroup.com/

PGMID, proliferative glomerulonephropathy with monoclonal immunoglobulin deposits; MIDD, monoclonal Ig deposition disease; C3GN with MIg, C3 glomerulonephritis with monoclonal gammopathy

¹ Nasr (2020) KI 97:589-601. ² Joly (2019) Blood 133:576-87. ³ Vignon (2017) Leukemia 31:123-9. ⁴ Javaugue (2019) Kidney Int 96(1):94-103 ⁵ Chauvet (2017)Blood 129:1437-47. 6 Heybeli C (2022). Am J Kidney Dis Feb; 79: 202-216. ⁷ Buxea (2019) Transplantation 103:1477-85.

VGL: FEMALE MGRS: PGNMID

• 2005 to 2012, numbers stable (24 years into diagnosis)

 Starting 2012, there was a subtle rise in her serum lambda FLC, but steep rise in mid-2013.

• Also in 2013, she started noting DOE

DADS, distal acquired demyelinating symmetric neuropathy with M protein; CANOMAD, chronic ataxic neuropathy, ophthamoplegia, IgM, cold agglutinins, and disialosyl antibodies; PGNMID, proliferative glomerulonephritis with monoclonal immunoglobulin deposits

Modified from Dispenzieri ASH education book 2020

VGL: FEMALE MGRS: MPGN

- The NT-proBNP in March 2013 had risen to 2376.
- Due to progression of her symptoms and her cardiac biomarkers, an endomyocardial biopsy was performed on 11/2013
- AL (lambda) amyloid was found

ANDROMEDA is a randomized, open-label, active-controlled, phase 3 study of DARA SC plus CyBorD vs CyBorD alone in newly diagnosed AL amyloidosis

MM, multiple myeloma; eGFR, estimated glomerular filtration rate; QW, weekly; Q2W, every 2 weeks; Q4W, every 4 weeks; MOD-PFS, major organ deterioration progression-free survival; CR, complete response; IV, intravenous; PO, oral. ^aDexamethasone 40 mg IV or PO, followed by cyclophosphamide 300 mg/m² IV or PO, followed by bortezomib 1.3 mg/m² SC on Days 1, 8, 15, and 22 in every 28-day cycle for a maximum of 6 cycles. Patients will receive dexamethasone 20 mg on the day of DARA SC dosing and 20 mg on the day after DARA SC dosing.

ANDROMEDA: HEMATOLOGIC OVERALL RESPONSE

Median time to ≥VGPR^a was 0.56 months for D-VCd and 0.82 months for VCd

^aAmong ≥VGPR responders (D-VCd, n=154; VCd, n=97); ^bNumbers have been rounded. Cl, confidence interval; CR, complete response; D-VCd, daratumumab/bortezomib/cyclophosphamide/dexamethasone; ORR, overall response rate; PR, partial response; VGPR, very good partial response.

ANDROMEDA: OS & PFS @ median FU of 11.4 months

MOD PFS = hemPFS, dialysis or heart transplant

Kastritis N Engl J Med 2021;385:46-58.

OUR WORK FOR TODAY

MGCS, monoclonal gammopathy of clinical significance; LPD, lymphoproliferative disorder; PCD, plasma cell disorder; MGRS, monoclonal gammopathy of renal significance; MGDS, monoclonal gammopathy of dermal significance; MGNS, monoclonal gammopathy of neural significance; UCD, unicentric Castleman's disease; iMCD, Idiopathic multicentric Castleman's disease; TAFRO, thrombocytopenia, anasarca, fever, fibrosis (marrow), renal dysfunction, organomegaly

MONOCLONAL GAMMOPATHY OF CLINICAL SIGNIFICANCE

- 1. Some of the hardest monoclonal gammopathy consultations, especially if patient with other comorbidities
- 2. Good history and examination go a long way if you know your differential diagnosis
- 3. Treatment is anecdotal, but making a diagnosis is the first step (clone directed Rx and IVIG, most common)
- 4. Most of these patients have excellent survival, but diagnosis & treatment prevents and reverses morbidity

MYELOMA, AMYLOID, DYSPROTEINEMIA GROUP AT MAYO

Rochester

- Nadine Abdallah
- Moritz Binder
- Francis Buadi
- Joselle Cook
- David Dingli
- Angela Dispenzieri
- Amy Fonder
- Morie Gertz
- Ronald Go
- Martha Grogan
- Suzanne Hayman
- Miriam Hobbs
- Lisa Hwa
- Prashant Kapoor

- Tax Kourelis
- Shaji Kumar
- Robert Kyle
- Martha Lacy
- Yi Lin
- Nelson Leung
- Eli Muchtar
- Vincent Rajkumar
- Rahma Warsame

Special thanks to:

- National Cancer Institute
- JABBS Foundation
- Predolin Foundation
- Andrew and Lillian A. Posey Foundation

Arizona

- Leif Bergsagel
- Saurabh Chhabra
- Rafael Fonseca
- Craig Reeder
- Julie Rosenthal

Jacksonville

- Sikander Ailawadhi
- Ricardo Parrondo
- Vivek Roy
- Tamur Sher

THANK YOU FOR YOUR ATTENTION.

• dispenzieri.angela@mayo.edu

MGCS — DERMATOLOGIC PRESENTATIONS

DADS, distal acquired demyelinating symmetric neuropathy with M protein; CANOMAD, chronic ataxic neuropathy, ophthamoplegia, IgM, cold agglutinins, and disialosyl antibodies; PGNMID, proliferative glomerulonephritis with monoclonal immunoglobulin deposits

Cryoglobulinemia

Scleromyxedema²

Necrobiotic Xanthogranuloma ³

Schnitzler's syndrome¹

¹ Simon A. *Allergy*. 2013;68(5):562-568. ² Rongioletti F. *J Am Acad Dermatol*. 2016;74(6):1194-1200. ³ Nelson CA. *JAMA Dermatol*. 2020;156(3):270-279.

TEMPI SYNDROME

Telangiectasias

Elevated erythropoietin & erythrocytosis

Monoclonal gammopathy

Perinephric-fluid collections

Intrapulmonary shunting

N Engl J Med 2010; 363:463-475

THERAPY OF MGCS (SKIN) MOSTLY ANECDOTAL

	1 st line	2 nd line	Other
Scleromyxedema	Intravenous gammaglobulin	Clone directed therapy	
Necrobiotic xanthogranuloma	Intravenous2nd line (bortezomibgammaglobulinor lenalidomide)		
Capillary leak	Intravenous gammaglobulin		Supportive care
Schnitzler's syndrome	Anti-IL1 mAb	Clone directed therapy	
Cryoglobulinemia	Treat underlying cause	Rituximab	Severe disease, Medrol, chemo, PE
TEMPI syndrome	Clone directed therapy		